【论文10】复现代码tips
一、准备工作
1.创建一个虚拟环境
conda create --name drgcnn38 python=3.8.18

2.激活虚拟环境
conda activate drgcnn38

注意事项
在Pycharm中终端(terminal)显示PS而不是虚拟环境base
问题如下所示
解决方法:shell路径改成cmd.exe
重启终端显示虚拟环境
3.安装torch
conda install pytorch==2.1.0 torchvision==0.16.0 torchaudio==2.1.0 cpuonly -c pytorch
安装一系列包
注意事项
Pycharm远程连接Linux服务器实现代码同步
1.工具-->部署-->配置
2.选择SFTP远程连接,路径填与服务器要同步的路径地址
二、代码学习
各部分的作用
- eye_pre_process:视网膜眼底图像预处理模块。
- Encoder:编码器训练模块。
- modules:包含模型结构、损失函数和学习率降低策略。
- utils:包含一些常用函数和评估指标。
- BFFN:双眼特征融合网络训练模块。
- CAM:类别注意力模块。
eye_pre_process
copy.py
# 创建一个ArgumentParser对象,用于处理命令行参数
parser = argparse.ArgumentParser() # 添加一个命令行参数 '--image-folder',类型为字符串,默认值为 'D:/cv_paper/lesson/Dataset/ceshi'
# 这个参数用于指定输入图像的文件夹路径
parser.add_argument('--image-folder', type=str, default=r'D:/cv_paper/lesson/Dataset/ceshi') # 添加一个命令行参数 '--output-folder',类型为字符串,默认值为 'D:\cv_paper\lesson/Dataset/ceshi_output'
# 注意:这里路径中的反斜杠在不同的操作系统中可能需要特别注意,Python字符串中推荐使用原始字符串(r前缀)来避免转义字符的问题
# 这个参数用于指定输出结果的文件夹路径
parser.add_argument('--output-folder', type=str, default=r'D:\cv_paper\lesson/Dataset/ceshi_output') # 添加一个命令行参数 '--crop-size',类型为整数,默认值为512
# 这个参数用于指定图像裁剪的大小
parser.add_argument('--crop-size', type=int, default=512, help='crop size of image') # 添加一个命令行参数 '-n' 或 '--num-processes',类型为整数,默认值为8
# 这个参数用于指定处理任务时要使用的进程数
# '-n' 是 '--num-processes' 的简写形式,帮助信息说明了该参数的作用
parser.add_argument('-n', '--num-processes', type=int, default=8, help='number of processes to use')
# 转换一个包含多个任务的列表,每个任务由文件名、目标路径和裁剪大小组成
# 对于jobs列表中的每个任务(索引为j),它首先检查是否已经处理了100个任务(作为进度指示),然后调用convert函数来执行实际的图像转换。
def convert_list(i, jobs): for j, job in enumerate(jobs): # 每处理100个任务打印一次进度 if j % 100 == 0: print(f'worker{i} has finished {j} tasks.') # 解包任务元组并调用convert函数 convert(*job) # 转换单个图像文件,包括模糊处理、裁剪和保存
def convert(fname, tgt_path, crop_size): img = Image.open(fname) # 打开图像文件 blurred = img.filter(ImageFilter.BLUR) # 应用模糊滤镜 ba = np.array(blurred) # 将图像转换为NumPy数组 h, w, _ = ba.shape # 获取图像的高度、宽度和通道数 # 尝试根据图像的亮度分布来识别前景区域 if w > 1.2 * h: # 计算左右两侧的最大亮度值 left_max = ba[:, :w // 32, :].max(axis=(0, 1)).astype(int) right_max = ba[:, -w // 32:, :].max(axis=(0, 1)).astype(int) max_bg = np.maximum(left_max, right_max) foreground = (ba > max_bg + 10).astype(np.uint8) # 识别前景区域 bbox = Image.fromarray(foreground).getbbox() # 获取前景区域的最小边界框 # 如果边界框太小或不存在,则打印消息并可能设置为None if bbox is None: print(f'No bounding box found for {fname} (???)') else: left, upper, right, lower = bbox if right - left < 0.8 * h or lower - upper < 0.8 * h: print(f'Bounding box too small for {fname}') bbox = None else: bbox = None # 如果图像已经是合适的宽高比,则不尝试识别前景 # 如果未找到有效的边界框,则使用正方形边界框 if bbox is None: bbox = square_bbox(img) # 使用边界框裁剪图像,并调整大小 cropped = img.crop(bbox) cropped = cropped.resize([crop_size, crop_size], Image.ANTIALIAS) # 注意:ANTIALIAS可能是个拼写错误,应该是ANTIALIASIS save(cropped, tgt_path) # 保存图像 # 返回一个正方形裁剪框的边界
def square_bbox(img): w, h = img.size left = max((w - h) // 2, 0) upper = 0 right = min(w - (w - h) // 2, w) lower = h return (left, upper, right, lower) # 保存PIL图像到文件
def save(img, fname): img.save(fname, quality=100, subsampling=0) # 注意:subsampling参数可能不是所有格式都支持 # 假设的main函数,用于组织整个流程(注意:这里只是一个示例)
def main(): # 示例任务列表,每个任务是一个(文件名, 目标路径, 裁剪大小)元组 jobs = [ ('input1.jpg', 'output1_resized.jpg', 256), ('input2.jpg', 'output2_resized.jpg', 256), # ... 更多任务 ] # 假设有一个工作者ID为1 convert_list(1, jobs) if __name__ == "__main__": main()
Encoder
main.py
# 定义主函数入口
def main(): # 解析配置参数 args = parse_configuration() # 加载配置文件 cfg = load_config(args.config) # 获取配置中保存的路径 save_path = cfg.config_base.config_save_path # 如果保存路径不存在,则创建该路径 if not os.path.exists(save_path): os.makedirs(save_path) # 将配置文件复制到保存路径 copy_config(args.config, cfg.config_base.config_save_path) # 执行工作函数 worker(cfg) # 定义工作函数,负责训练、验证和测试模型
def worker(cfg): # 根据配置生成模型 model = generate_model(cfg) # 计算模型总参数数量 total_param = 0 for param in model.parameters(): total_param += param.numel() print("Parameter: %.2fM" % (total_param / 1e6)) # 打印模型参数数量(单位:百万) # 根据配置生成训练、验证和测试数据集 train_dataset, test_dataset, val_dataset = generate_dataset(cfg) # 初始化性能评估器 estimator = PerformanceEvaluator(cfg.config_train.config_criterion, cfg.config_data.config_num_classes) # 执行训练过程 train( cfg=cfg, model=model, train_dataset=train_dataset, val_dataset=val_dataset, estimator=estimator, ) # 测试最佳验证模型性能 print('This is the performance of the best validation model:') checkpoint = os.path.join(cfg.config_base.config_save_path, 'best_validation_weights.pt') cfg.config_train.config_checkpoint = checkpoint # 设置检查点路径为最佳验证模型 model = generate_model(cfg) # 重新生成模型以加载权重 evaluate(cfg, model, test_dataset, estimator) # 评估模型性能 # 测试最终模型性能 print('This is the performance of the final model:') checkpoint = os.path.join(cfg.config_base.config_save_path, 'final_weights.pt') cfg.config_train.config_checkpoint = checkpoint # 设置检查点路径为最终模型 model = generate_model(cfg) # 重新生成模型以加载权重 evaluate(cfg, model, test_dataset, estimator) # 评估模型性能 # 如果此脚本作为主程序运行,则调用main函数
if __name__ == '__main__': main()
Encoder_predict.py
进行模型的训练,具体来说,它定义了一个训练循环&#x
相关文章:
【论文10】复现代码tips
一、准备工作 1.创建一个虚拟环境 conda create --name drgcnn38 python=3.8.18 2.激活虚拟环境 conda activate drgcnn38 注意事项 在Pycharm中终端(terminal)显示PS而不是虚拟环境base 问题如下所示 解决方法:shell路径改成cmd.exe 重启终端显示虚拟环境 3.安装torch …...
分布式缓存获取以及设置
1. 通用代码 public SysUser getCache(String sysUserId) {String cacheKey "litgery:warehouse:" sysUserId;// 尝试从缓存中获取数据CacheData cacheData redisUtils.get(cacheKey);if (null ! cacheData) {if (Boolean.TRUE.equals(cacheData.getExist())) {re…...
SMO算法,platt论文的原始算法及优化算法
platt论文:[PDF] Sequential Minimal Optimization : A Fast Algorithm for Training Support Vector Machines | Semantic Scholar 算法优化:[PDF] Improvements to Platts SMO Algorithm for SVM Classifier Design | Semantic Scholar 包含个人plat…...
2.3 openCv -- 对矩阵执行掩码操作
在矩阵上进行掩模操作相当简单。其基本思想是根据一个掩模矩阵(也称为核)来重新计算图像中每个像素的值。这个掩模矩阵包含的值决定了邻近像素(以及当前像素本身)对新的像素值产生多少影响。从数学角度来看,我们使用指定的值来做一个加权平均。 具体而言,掩模操作通常涉…...
【Django】 js实现动态赋值、显示show隐藏hide效果
文章目录 需要达到的前端效果预览:实现步骤复制bootstrp代码(buttons)复制bootstrp代码(Alert警告框)写js测试效果 需要达到的前端效果预览: {% load static %} <!DOCTYPE html> <html lang"…...
qt--做一个拷贝文件器
一、项目要求 使用线程完善文件拷贝器的操作 主窗口不能假死主窗口进度条必须能动改写文件大小的单位(自适应) 1TB1024GB 1GB1024MB 1MB1024KB 1KB1024字节 二、所需技术 1.QFileDialog 文件对话框 QFileDialog也继承了QDialog类,直接使用静态…...
Eclipse 搭建 C/C++ 开发环境以及eclipse的使用
一、下载、安装 MinGW 1、下载: 下载地址:MinGW - Minimalist GNU for Windows - Browse Files at SourceForge.net 点击“Download Latest Version”即可 下载完成后,得到一个名为 mingw-get-setup.exe 的安装文件。双击运行,安装即可。 …...
【初阶数据结构】复杂度算法题篇
旋转数组 力扣原题 方案一 循环K次将数组所有元素向后移动⼀位(代码不通过) 时间复杂度O(n2) 空间复杂度O(1) void rotate(int* nums, int numsSize, int k) {while (k--) {int end nums[numsSize - 1];for (int i numsSize - 1; i > 0; i--) {nums[i] num…...
20240725项目的maven环境报红-重新配置maven
1.在编辑器里面打开项目,导入源码 (1)找到项目的地址C:\Users\zzz\IdeaProjects\datasys,然后右击用idea编辑器打开。 (2)idea中上菜单栏打开open,然后输入file,选择源代码文件 2.…...
若依 ruoyi poi Excel合并行的导入
本文仅针对文字相关的合并做了处理 ,图片合并及保存需要另做处理!! 目标:Excel合并行内容的导入 结果: 1. ExcelUtil.java 类,新增方法:判断是否是合并行 /*** 新增 合并行相关代码:…...
优化算法:1.遗传算法(GA)及Python实现
一、定义 遗传算法就像是在模拟“优胜劣汰”的进化过程,通过选择最优秀的个体,交配产生下一代,并引入一定的变异,逐步优化解决问题。 二、具体步骤 初始化种群(Initialization): 假设你要找到一个迷宫的最佳出口路径。…...
企业化运维(8)Docker容器技术
###1.Docker介绍### 什么是Docker Docker 是一个开源的应用容器引擎,让开发者可以打包他们的应用以及依赖包到一个可移植的镜像中,然后发布到任何流行的 Linux或Windows 机器上,也可以实现虚拟化。容器是完全使用沙箱机制,相互之间…...
Unity C#底层原理(二)
委托 方法的容器:委托可以存储一个或多个方法的引用。可以使用委托对象来调用这些方法。函数/方法的变量类型:委托类型可以像变量一样声明和使用,存储方法的引用。存储、传递方法:委托可以作为参数传递给方法,也可以作…...
计算机网络-配置路由器ACL(访问控制列表)
配置访问控制列表ACL 拓扑结构 拓扑结构如下: 要配置一个ACL,禁止PC0访问PC3,禁止PC4访问PC0,其它正常。 配置Router0 配置接口IP地址: interface fastethernet 0/0 ip address 192.168.1.1 255.255.255.0 no shu…...
51单片机嵌入式开发:20、STC89C52R基于C51嵌入式点阵广告屏的设计
STC89C52R基于C51嵌入式点阵广告屏的设计 1 概述2 LED点阵介绍2.1 特点和优势2.2 工作原理:2.3 使用方法: 3 LED点阵原理3.1 Led点阵内部电路3.2 原理图电路3.3 74HC595 4 软件实现点阵图案的滑动4.1 软件工程代码4.2 Protues仿真 5 总结 配套示例程序 1…...
VLC输出NDI媒体流
目录 1. 下载安装VLC Play 2. 首先在电脑上安装NDI Tools 3. 运行VLC进行输出配置 4. 播放视频 5. 验证 (1)用Studio Monitor验证 (2)用OBS验证 NDI(Network Device Interface)即网络设备接口,是由美国 NewTek 公司开发的免费标准,它可使兼容的视频产品以高质量…...
WiFi 局域网通信 - 发现服务和解析
1. nsdManager nsdManager requireContext().getSystemService(Context.NSD_SERVICE) as NsdManager2. NsdManager.DiscoveryListener 注意:在onStartDiscoveryFailed 和 onStopDiscoveryFailed里不要调用nsdManager.stopServiceDiscovery(this) 方法࿰…...
ChatGPT建议前端学习计划
HTML&CSS基础 - 学习HTML标签、CSS属性、页面布局等基础知识 JavaScript基础 - 学习变量、数据类型、控制流、函数等基础知识 jQuery - 学习如何使用jQuery处理文档对象模型(DOM)、事件、动画等 Ajax - 全称为 Asynchronous JavaScript and XML&…...
YOLO5项目目录最强解析
YOLO5项目目录解析 YOLOv5 项目目录下的文件和目录的结构,以下是对每个目录和文件的解释: 目录 📁 .github: 存放 GitHub 相关配置和文件,如 GitHub Actions 工作流文件、Issue 模板等,用于自动化构建和持续集成等功…...
【python】sklearn基础教程及示例
【python】sklearn基础教程及示例 Scikit-learn(简称sklearn)是一个非常流行的Python机器学习库,提供了许多常用的机器学习算法和工具。以下是一个基础教程的概述: 1. 安装scikit-learn 首先,确保你已经安装了Python和…...
业务系统对接大模型的基础方案:架构设计与关键步骤
业务系统对接大模型:架构设计与关键步骤 在当今数字化转型的浪潮中,大语言模型(LLM)已成为企业提升业务效率和创新能力的关键技术之一。将大模型集成到业务系统中,不仅可以优化用户体验,还能为业务决策提供…...
智慧医疗能源事业线深度画像分析(上)
引言 医疗行业作为现代社会的关键基础设施,其能源消耗与环境影响正日益受到关注。随着全球"双碳"目标的推进和可持续发展理念的深入,智慧医疗能源事业线应运而生,致力于通过创新技术与管理方案,重构医疗领域的能源使用模式。这一事业线融合了能源管理、可持续发…...
CentOS下的分布式内存计算Spark环境部署
一、Spark 核心架构与应用场景 1.1 分布式计算引擎的核心优势 Spark 是基于内存的分布式计算框架,相比 MapReduce 具有以下核心优势: 内存计算:数据可常驻内存,迭代计算性能提升 10-100 倍(文档段落:3-79…...
MMaDA: Multimodal Large Diffusion Language Models
CODE : https://github.com/Gen-Verse/MMaDA Abstract 我们介绍了一种新型的多模态扩散基础模型MMaDA,它被设计用于在文本推理、多模态理解和文本到图像生成等不同领域实现卓越的性能。该方法的特点是三个关键创新:(i) MMaDA采用统一的扩散架构…...
安宝特案例丨Vuzix AR智能眼镜集成专业软件,助力卢森堡医院药房转型,赢得辉瑞创新奖
在Vuzix M400 AR智能眼镜的助力下,卢森堡罗伯特舒曼医院(the Robert Schuman Hospitals, HRS)凭借在无菌制剂生产流程中引入增强现实技术(AR)创新项目,荣获了2024年6月7日由卢森堡医院药剂师协会࿰…...
Webpack性能优化:构建速度与体积优化策略
一、构建速度优化 1、升级Webpack和Node.js 优化效果:Webpack 4比Webpack 3构建时间降低60%-98%。原因: V8引擎优化(for of替代forEach、Map/Set替代Object)。默认使用更快的md4哈希算法。AST直接从Loa…...
前端中slice和splic的区别
1. slice slice 用于从数组中提取一部分元素,返回一个新的数组。 特点: 不修改原数组:slice 不会改变原数组,而是返回一个新的数组。提取数组的部分:slice 会根据指定的开始索引和结束索引提取数组的一部分。不包含…...
【PX4飞控】mavros gps相关话题分析,经纬度海拔获取方法,卫星数锁定状态获取方法
使用 ROS1-Noetic 和 mavros v1.20.1, 携带经纬度海拔的话题主要有三个: /mavros/global_position/raw/fix/mavros/gpsstatus/gps1/raw/mavros/global_position/global 查看 mavros 源码,来分析他们的发布过程。发现前两个话题都对应了同一…...
【AI News | 20250609】每日AI进展
AI Repos 1、OpenHands-Versa OpenHands-Versa 是一个通用型 AI 智能体,通过结合代码编辑与执行、网络搜索、多模态网络浏览和文件访问等通用工具,在软件工程、网络导航和工作流自动化等多个领域展现出卓越性能。它在 SWE-Bench Multimodal、GAIA 和 Th…...
开疆智能Ethernet/IP转Modbus网关连接鸣志步进电机驱动器配置案例
在工业自动化控制系统中,常常会遇到不同品牌和通信协议的设备需要协同工作的情况。本案例中,客户现场采用了 罗克韦尔PLC,但需要控制的变频器仅支持 ModbusRTU 协议。为了实现PLC 对变频器的有效控制与监控,引入了开疆智能Etherne…...




