搜索引擎项目(四)
SearchEngine · 王宇璇/submit - 码云 - 开源中国 (gitee.com)
基于Servlet完成前后端交互
@WebServlet("/searcher")
public class DocSearcherServlet extends HttpServlet {private static DocSearcher docSearcher = new DocSearcher();private ObjectMapper objectMapper = new ObjectMapper();protected void doGet(HttpServletRequest request, HttpServletResponse response) throws ServletException, IOException {//1.先解析请求,拿到用户提交的查询词String query = request.getParameter("query");if(query==null||query.equals("")){String msg = "非法输入,没有获取query的值。";System.out.println(msg);response.sendError(404 , msg);return;}//2.打印记录query的值System.out.println("query:"+query);//3.调用搜索模块进行搜索List<Result> results = docSearcher.search(query);//4.把当前的搜索结果进行打包response.setContentType("application/json; charset=utf-8");objectMapper.writeValue(response.getWriter(), results);}
}
总体思路就是接收前端用户输入的query传入后端,将后端的搜索结果返回给前端展示,不要忘记引用Servlet依赖。
前端代码
先创建一个web文件夹因为我们之后是要部署到服务器上的。

创建一个js文件夹保存js文件可以简化我们前端代码的构建。
前端代码就是对数据的接收以及页面设置。这里挑一些重要的属性介绍给大家。
html,body{height: 100%;background-image: url(preview.jpg);background-repeat: no-repeat;background-position: center;background-size: cover;}
这个jpg文件就是浏览器的背景图,大家可以根据自己的喜好进行修改。
因为图片和前端页面在同一路径下(直接将图片粘贴到WebApp下),所以直接用相对路径表示。
Smart TomCat配置与使用(本地测试)
1.首先先在官网下载tomcat。
2.打开idea,找到插件商城搜索SmartTomcat下载。
3.右上角最近配置,点击编辑当前配置。

4.点击右上角+号,添加SmartTomcat配置
配置内容,名称随便填
TomcatServer从文件中查找,打开刚才下载好的Tomcat的文件路径即可。
有一点值得注意的是Deployment Directory最终子目录一定是webapp。
完成之后启动tomcat就可以本地访问此网站了。http://localhost:8080/SearchEngine/
如果没有问题的话就可以向服务器上部署了。
部署到云服务器:
更改代码引用路径:
我们可以用FileZilla Client来传输本地与云服务器的文件。
将DocSearcher中的停用词文档传输到云服务器上,包括正排索引和倒排索引的两个文件
此时将STOP_WORD_PATH和INDEX_PATH改为云服务器上的路径即可。


打包
首先在pom.xml文件进行配置 ,主要就是配置打war包并且包的名称
<packaging>war</packaging><build><finalName>SearchEngine</finalName></build>
此时进行打包,云服务器大家可以选择腾讯或者阿里云,终端选择Xshell 7
连接云服务器,在云服务器中下载jdk以及tomcat,jdk的版本一定要与代码运行时jdk版本一致
这里说我遇到的一个bug:
我电脑上jdk版本是22,但是云服务器上是17
在我们的代码中有一处地方是去掉重复的文件,
while (!queue.isEmpty()){Pos minPos = queue.poll();Weight curWeight = source.get(minPos.row).get(minPos.col);//2.4看看取到的Weight中的DocId和上一个是否相同//相同就合并if(!target.isEmpty()){Weight lastWeight = target.get(target.size() - 1);if(lastWeight.getDocId() == curWeight.getDocId()){//合并WeightlastWeight.setWeight(lastWeight.getWeight() + curWeight.getWeight());}else{target.add(curWeight);}
target.get(target.size() - 1);这个方法之前是getLast()也就是jdk22对取数组最后一个元素的方法进行了封装,但是jdk17没有这个方法,就导致了bug的出现。
此时我们打开项目的文件所在位置,其目录下有一个target文件,我们打的war包就在此目录下,我们将此文件传输到云服务器的Tomcat,Webapps目录下,就会自动解压。此时在浏览器上访问云服务器http://47.94.142.181:8080/SearchEngine/就可以访问到我们的项目了。
相关文章:
搜索引擎项目(四)
SearchEngine 王宇璇/submit - 码云 - 开源中国 (gitee.com) 基于Servlet完成前后端交互 WebServlet("/searcher") public class DocSearcherServlet extends HttpServlet {private static DocSearcher docSearcher new DocSearcher();private ObjectMapper obje…...
声音克隆一键本地化部署 GPT-SoVITS
文章目录 GPT-SoVITS 介绍1:GPT-SoVITS安装2:GPT-SoVITS使用2.1 人声伴奏分离,去混响去延时工具2.2 语音切分工具2.3 语音降噪工具2.4 中文批量离线ASR工具2.5 语音文本校对标注工具GPT-SoVITS 介绍 GPT-SoVITS: 是一个由RVC变声器创始人“花儿不哭”推出的免费开源项目。…...
使用【Easypoi】实现百万数据导出
本文使用easypoi实现百万级数据导出 文章目录 前言一、一般情况下导出二、解决思路三、实现步骤导入依赖重写方法调用实现 结束 前言 下文实现了通过easypoi实现将百万级数据导出 一、一般情况下导出 一般导出流程(简单导出): 创建对应的…...
GRL-图强化学习
GRL代码解析 一、agent.py二、drl.py三、env.py四、policy.py五、utils.py 一、agent.py 这个Python文件agent.py实现了一个强化学习(Reinforcement Learning, RL)的智能体,用于在图环境(graph environment)中进行学习…...
昇思25天学习打卡营第22天|Pix2Pix实现图像转换
Pix2Pix图像转换学习总结 概述 Pix2Pix是一种基于条件生成对抗网络(cGAN)的深度学习模型,旨在实现不同图像风格之间的转换,如从语义标签到真实图像、灰度图到彩色图、航拍图到地图等。这一模型由Phillip Isola等人在2017年提出&…...
全感知、全覆盖、全智能的智慧快消开源了。
智慧快消视频监控平台是一款功能强大且简单易用的实时算法视频监控系统。它的愿景是最底层打通各大芯片厂商相互间的壁垒,省去繁琐重复的适配流程,实现芯片、算法、应用的全流程组合,从而大大减少企业级应用约95%的开发成本。AI安全管理平台&…...
ABC364:D - K-th Nearest(二分)
题目 在一条数线上有 NQNQ 个点 A1,…,AN,B1,…,BQA1,…,AN,B1,…,BQ ,其中点 AiAi 的坐标为 aiai ,点 BjBj 的坐标为 bjbj 。 就每个点 j1,2,…,Qj1,2,…,Q 回答下面的问题: 设 XX 是 A1,A2,…,ANA1,A2,…,AN 中最…...
hive中分区与分桶的区别
过去,在学习hive的过程中学习过分桶与分区。但是,却未曾将分区与分桶做详细比较。今天,回顾skew join时涉及到了分桶这一概念,一时间无法区分出分区与分桶的区别。查阅资料,特地记录下来。 一、Hive分区 1.分区一般是…...
Blender材质-PBR与纹理材质
1.PBR PBR:Physically Based Rendering 基于物理的渲染 BRDF:Bidirection Reflectance Distribution Function 双向散射分散函数 材质着色操作如下图: 2.纹理材质 左上角:编辑器类型中选择,着色器编辑器 新建着色器 -> 新建纹理 -> 新…...
微软的Edge浏览器如何设置兼容模式
微软的Edge浏览器如何设置兼容模式? Microsoft Edge 在浏览部分网站的时候,会被标记为不兼容,会有此网站需要Internet Explorer的提示,虽然可以手动点击在 Microsoft Edge 中继续浏览,但是操作起来相对复杂,…...
SpringBoot开启多端口探究(1)
文章目录 前情提要发散探索从management.port开始确定否需要开启额外端口额外端口是如何开启的ManagementContextFactory的故事从哪儿来创建过程 management 相关API如何被注册 小结 前情提要 最近遇到一个需求,在单个服务进程上开启多网络端口,将API的…...
优化算法:2.粒子群算法(PSO)及Python实现
一、定义 粒子群算法(Particle Swarm Optimization,PSO)是一种模拟鸟群觅食行为的优化算法。想象一群鸟在寻找食物,每只鸟都在尝试找到食物最多的位置。它们通过互相交流信息,逐渐向食物最多的地方聚集。PSO就是基于这…...
ThreadLocal面试三道题
针对ThreadLocal的面试题,我将按照由简单到困难的顺序给出三道题目,并附上参考答案的概要。 1. 简单题:请简述ThreadLocal是什么,以及它的主要作用。 参考答案: ThreadLocal是Java中的一个类,用于提供线…...
Git操作指令(已完结)
Git操作指令 一、安装git 1、设置配置信息: # global全局配置 git config --global user.name "Your username" git config --global user.email "Your email"# 显示颜色 git config --global color.ui true# 配置别名,各种指令都…...
大数据采集工具——Flume简介安装配置使用教程
Flume简介&安装配置&使用教程 1、Flume简介 一:概要 Flume 是一个可配置、可靠、高可用的大数据采集工具,主要用于将大量的数据从各种数据源(如日志文件、数据库、本地磁盘等)采集到数据存储系统(主要为Had…...
C语言 #具有展开功能的排雷游戏
文章目录 前言 一、整个排雷游戏的思维梳理 二、整体代码分布布局 三、游戏主体逻辑实现--test.c 四、整个游戏头文件的引用以及函数的声明-- game.h 五、游戏功能的具体实现 -- game.c 六、老六版本 总结 前言 路漫漫其修远兮,吾将上下而求索。 一、整个排…...
npm publish出错,‘proxy‘ config is set properly. See: ‘npm help config‘
问题:使用 npm publish发布项目依赖失败,报错 proxy config is set properly. See: npm help config 1、先查找一下自己的代理 npm config get proxy npm config get https-proxy npm config get registry2、然后将代理和缓存置空 方式一: …...
Springboot 多数据源事务
起因 在一个service方法上使用的事务,其中有方法是调用的多数据源orderDB 但是多数据源没有生效,而是使用的primaryDB 原因 spring 事务实现的方式 以 Transactional 注解为例 (也可以看 TransactionTemplate, 这个流程更简单一点)。 入口:ProxyTransa…...
Python每日学习
我是从c转来学习Python的,总感觉和c相比Python的实操简单,但是由于写c的代码多了,感觉Python的语法好奇怪 就比如说c的开头要有库(就是类似于#include <bits/stdc.h>)而且它每一项的代码结束之后要有一个表示结…...
数据库 执行sql添加删除字段
添加字段: ALTER TABLE 表明 ADD COLUMN 字段名 类型 DEFAULT NULL COMMENT 注释 AFTER 哪个字段后面; 效果: 删除字段: ALTER TABLE 表明 DROP COLUMN 字段;...
零门槛NAS搭建:WinNAS如何让普通电脑秒变私有云?
一、核心优势:专为Windows用户设计的极简NAS WinNAS由深圳耘想存储科技开发,是一款收费低廉但功能全面的Windows NAS工具,主打“无学习成本部署” 。与其他NAS软件相比,其优势在于: 无需硬件改造:将任意W…...
盘古信息PCB行业解决方案:以全域场景重构,激活智造新未来
一、破局:PCB行业的时代之问 在数字经济蓬勃发展的浪潮中,PCB(印制电路板)作为 “电子产品之母”,其重要性愈发凸显。随着 5G、人工智能等新兴技术的加速渗透,PCB行业面临着前所未有的挑战与机遇。产品迭代…...
《Playwright:微软的自动化测试工具详解》
Playwright 简介:声明内容来自网络,将内容拼接整理出来的文档 Playwright 是微软开发的自动化测试工具,支持 Chrome、Firefox、Safari 等主流浏览器,提供多语言 API(Python、JavaScript、Java、.NET)。它的特点包括&a…...
Qwen3-Embedding-0.6B深度解析:多语言语义检索的轻量级利器
第一章 引言:语义表示的新时代挑战与Qwen3的破局之路 1.1 文本嵌入的核心价值与技术演进 在人工智能领域,文本嵌入技术如同连接自然语言与机器理解的“神经突触”——它将人类语言转化为计算机可计算的语义向量,支撑着搜索引擎、推荐系统、…...
现代密码学 | 椭圆曲线密码学—附py代码
Elliptic Curve Cryptography 椭圆曲线密码学(ECC)是一种基于有限域上椭圆曲线数学特性的公钥加密技术。其核心原理涉及椭圆曲线的代数性质、离散对数问题以及有限域上的运算。 椭圆曲线密码学是多种数字签名算法的基础,例如椭圆曲线数字签…...
什么是EULA和DPA
文章目录 EULA(End User License Agreement)DPA(Data Protection Agreement)一、定义与背景二、核心内容三、法律效力与责任四、实际应用与意义 EULA(End User License Agreement) 定义: EULA即…...
爬虫基础学习day2
# 爬虫设计领域 工商:企查查、天眼查短视频:抖音、快手、西瓜 ---> 飞瓜电商:京东、淘宝、聚美优品、亚马逊 ---> 分析店铺经营决策标题、排名航空:抓取所有航空公司价格 ---> 去哪儿自媒体:采集自媒体数据进…...
Unsafe Fileupload篇补充-木马的详细教程与木马分享(中国蚁剑方式)
在之前的皮卡丘靶场第九期Unsafe Fileupload篇中我们学习了木马的原理并且学了一个简单的木马文件 本期内容是为了更好的为大家解释木马(服务器方面的)的原理,连接,以及各种木马及连接工具的分享 文件木马:https://w…...
算法岗面试经验分享-大模型篇
文章目录 A 基础语言模型A.1 TransformerA.2 Bert B 大语言模型结构B.1 GPTB.2 LLamaB.3 ChatGLMB.4 Qwen C 大语言模型微调C.1 Fine-tuningC.2 Adapter-tuningC.3 Prefix-tuningC.4 P-tuningC.5 LoRA A 基础语言模型 A.1 Transformer (1)资源 论文&a…...
Go 并发编程基础:通道(Channel)的使用
在 Go 中,Channel 是 Goroutine 之间通信的核心机制。它提供了一个线程安全的通信方式,用于在多个 Goroutine 之间传递数据,从而实现高效的并发编程。 本章将介绍 Channel 的基本概念、用法、缓冲、关闭机制以及 select 的使用。 一、Channel…...
