营销推广外包/seo工程师是做什么的
文章收录在网站:http://hardyfish.top/
文章收录在网站:http://hardyfish.top/
文章收录在网站:http://hardyfish.top/
文章收录在网站:http://hardyfish.top/
事务
事务Producer保证消息写入分区的原子性,即这批消息要么全部写入成功,要么全失败。此外,Producer重启回来后,kafka依然保证它们发送消息的精确一次处理。
开启enable.idempotence = true
设置Producer端参数transctional.id
数据的发送需要放在beginTransaction和commitTransaction之间。
Consumer端的代码也需要加上isolation.level
参数,用以处理事务提交的数据。
producer.initTransactions();
try {producer.beginTransaction();producer.send(record1);producer.send(record2);producer.commitTransaction();
} catch (KafkaException e) {producer.abortTransaction();
}
事务Producer虽然在多分区的数据处理上保证了幂等,但是处理性能上相应的是会有一些下降的。
数据存储
Kafka 消息以 Partition 作为存储单元,每个 Topic 的消息被一个或者多个 Partition 进行管理。
- Partition 是一个有序的,不变的消息队列,消息总是被追加到尾部。
- 一个 Partition 不能被切分成多个散落在多个 Broker 上或者多个磁盘上。
Partition 又划分成多个 Segment 来组织数据。
Segment 在它的下面还有两个组成部分:
- 索引文件:以
.index
后缀结尾,存储当前数据文件的索引。- 数据文件:以
.log
后缀结尾,存储当前索引文件名对应的数据文件。
请求模型
请求到Broker后,也会通过类似于请求转发的组件Acceptor转发到对应的工作线程上,Kafka中被称为网络线程池,一般默认每个Broker上为3个工作线程,可以通过参数 num.network.threads
进行配置。
并且采用轮询的策略,可以很均匀的将请求分发到不同的网络线程中进行处理。
但是实际的处理请求并不是由网络线程池进行处理的,而是会交给后续的IO线程池,当网络线程接受到请求的时候,会将请求写入到共享的请求队列中,而IO线程池会进行异步的处理,默认情况下是8个,可以通过
num.io.threads
进行配置。
常见场景
重复消费
consumer 在消费过程中,应用进程被强制kill掉或发生异常退出。
例如在一次poll500条消息后,消费到200条时,进程被强制kill消费到offset未提交,或出现异常退出导致消费到offset未提交。
下次重启时,依然会重新拉取500消息,造成之前消费到200条消息重复消费了两次。
消费者消费时间过长。
max.poll.interval.ms
参数定义了两次poll的最大间隔,它的默认值是 5 分钟,表示你的 Consumer 程序如果在 5 分钟之内无法消费完 poll 方法返回的消息,那么 Consumer 会主动发起 离开组 的请求,Coordinator 也会开启新一轮 Rebalance。因为上次消费的offset未提交,再次拉取的消息是之前消费过的消息,造成重复消费。
提高消费能力,提高单条消息的处理速度;根据实际场景
max.poll.interval.ms
值设置大一点,避免不必要的rebalance;可适当减小
max.poll.records
的值,默认值是500,可根据实际消息速率适当调小。
消息丢失
消费者程序丢失数据
Consumer 程序从 Kafka 获取到消息后开启了多个线程异步处理消息,而 Consumer 程序自动地向前更新位移。
假如某个线程运行失败了,它负责的消息没有被成功处理,但位移已经被更新了,因此这条消息对于 Consumer 而言实际上是丢失了。
最佳配置:
不要使用
producer.send(msg)
,而要使用producer.send(msg, callback)
。设置 acks = all:
- 设置成 all,则表明所有副本 Broker 都要接收到消息,该消息才算是 已提交。
设置 retries 为一个较大的值。
- 当出现网络的瞬时抖动时,消息发送可能会失败,此时配置了
retries > 0
的 Producer 能够自动重试消息发送,避免消息丢失。设置
unclean.leader.election.enable = false
。设置
replication.factor >= 3
。
- 防止消息丢失的主要机制就是冗余。
设置
min.insync.replicas > 1
。
- 控制的是消息至少要被写入到多少个副本才算是 已提交 。
- 设置成大于 1 可以提升消息持久性。
- 在实际环境中千万不要使用默认值 1。
确保
replication.factor > min.insync.replicas
。
- 如果两者相等,那么只要有一个副本挂机,整个分区就无法正常工作了。
确保消息消费完成再提交。
- Consumer 端有个参数
enable.auto.commit
,最好把它设置成 false,并采用手动提交位移的方式。
消息顺序
乱序场景一
因为一个topic可以有多个partition,kafka只能保证partition内部有序。
1、可以设置topic 有且只有一个partition。
2、根据业务需要,需要顺序的指定为同一个partition。
乱序场景二
对于同一业务进入了同一个消费者组之后,用了多线程来处理消息,会导致消息的乱序。
消费者内部根据线程数量创建等量的内存队列,对于需要顺序的一系列业务数据,根据key或者业务数据,放到同一个内存队列中,然后线程从对应的内存队列中取出并操作。
相关文章:

Kafka知识总结(事务+数据存储+请求模型+常见场景)
文章收录在网站:http://hardyfish.top/ 文章收录在网站:http://hardyfish.top/ 文章收录在网站:http://hardyfish.top/ 文章收录在网站:http://hardyfish.top/ 事务 事务Producer保证消息写入分区的原子性,即这批消…...

C#中重写tospring方法
在C#中,重写ToString方法允许你自定义对象的字符串表示形式。当你想要打印对象或者在调试时查看对象的状态时,重写ToString方法非常有用。 默认情况下,ToString方法返回对象的类型名称。通过重写这个方法,你可以返回一个更有意义…...

【机器学习基础】机器学习的数学基础
【作者主页】Francek Chen 【专栏介绍】 ⌈ ⌈ ⌈Python机器学习 ⌋ ⌋ ⌋ 机器学习是一门人工智能的分支学科,通过算法和模型让计算机从数据中学习,进行模型训练和优化,做出预测、分类和决策支持。Python成为机器学习的首选语言,…...

fastapi之零
FastAPI 详细介绍 FastAPI 是一个现代、快速(高性能)的 web 框架,用于构建 API。它基于标准的 Python 类型提示,使用 Starlette 作为 web 框架,Pydantic 进行数据验证和解析。以下是对 FastAPI 的详细介绍,…...

SpringBoot整合PowerJob 实现远程任务
PowerJob介绍 PowerJob 是全新一代分布式任务调度和计算框架,提供了可视化界面,可通过单机、远程等形式调用任务并提供了运行监控和日志查看的功能模块,是当前比较流行的分布式定时任务框架之一; PowerJob 官网文档地址 环境搭建…...

【扒模块】DFF
图 医学图像分割任务 代码 import torch import torch.nn as nnfrom timm.models.layers import DropPath # 论文:D-Net:具有动态特征融合的动态大核,用于体积医学图像分割(3D图像任务) # https://arxiv.org/abs/2403…...

frameworks 之Socket
frameworks 之Socket Socket服务端1.创建Socket。2.绑定socket3.监听socket4.等待客户端连接5.读取或者写入给客户端 客户端1.创建Socket。2.连接服务端Socket3.读取或者写入给客户端4.关闭socket 演示代码 Epoll创建Epoll添加或删除Epoll等待消息返回Epoll演示代码 SocketPair…...

WEB前端开发中如何实现大文件上传?
大文件上传是个非常普遍的场景,在面试中也会经常被问到,大文件上传的实现思路和流程。在日常开发中,无论是云存储、视频分享平台还是企业级应用,大文件上传都是用户与服务器之间交互的重要环节。随着现代网络应用的日益复杂化&…...

ts给vue中props设置指定类型
interface IBaseObject {[key: string | number]: any; }export default defineComponent({name:xx,props:{data:{type:Object as PropType<IBaseObject>,default:()>({}),required:true},}, })...

模拟实现c++中的list模版
☺☺☺☺☺☺☺☺☺☺ 点击 进入杀马特的主页☺☺☺☺☺☺☺☺☺☺ 目录 一list简述: 二库内常用接口函数使用: 1reverse(): 2.s…...

从信息论的角度看微博推荐算法
引言 在数字时代,推荐系统已成为社交媒体和其他在线服务平台的核心组成部分。它们通过分析用户行为和偏好,为用户提供个性化的内容,从而提高用户满意度和平台的参与度。推荐系统不仅能够增强用户体验,还能显著提升广告投放的效率…...

CISC(复杂指令集)与RISC(精简指令集)的区别
RISC(Reduced Instruction Set Computer)和CISC(complex instruction set computer)是当前CPU的两种架构。 它们的区别在于不同的CPU设计理念和方法。 早期的CPU全部是CISC架构,它的设计目的是要用最少的机器语言指令来完成所需的计算任务。比如对于乘法运算&#x…...

自定义数据库连接的艺术:Laravel中配置多数据库连接详解
自定义数据库连接的艺术:Laravel中配置多数据库连接详解 在现代Web应用开发中,经常需要连接到多个数据库。Laravel,作为PHP界最受欢迎的框架之一,提供了强大的数据库抽象层,支持多种数据库系统,并且允许开…...

力扣高频SQL 50题(基础版)第八题
文章目录 力扣高频SQL 50题(基础版)第八题1581. 进店却未进行过交易的顾客题目说明思路分析实现过程准备数据:实现方式:结果截图:总结: 力扣高频SQL 50题(基础版)第八题 1581. 进店…...

【C++20】从0开始自制协程库
文章目录 参考 很多人对协程的理解就是在用户态线程把CPU对线程的调度复制了一遍,减少了线程的数量,也就是说在一个线程内完成对协程的调度,不需要线程切换导致上下文切换的开销。但是线程切换是CPU行为,就算你的程序只有一个线程…...

Docker 深度解析:从入门到精通
引言 在当今的软件开发领域,容器化技术已经成为一种趋势。Docker 作为容器化技术的代表,以其轻量级、可移植性和易用性,被广泛应用于各种场景。本文将从 Docker 的基本概念入手,详细介绍 Docker 的安装、基本操作、网络配置、数据…...

[C++] 模板编程-02 类模板
一 类模板 template <class T或者typename T> class 类名 { .......... } 1.1 两种不同的实现 在以下的两种实现中,其实第一种叫做成员函数模板,并不能称为类模板因为这种实现,我们在调用时,并不需要实例化为Product这个类指定指定特定类型。 // 实现1 clas…...

嵌入式C++、STM32、树莓派4B、OpenCV、TensorFlow/Keras深度学习:基于边缘计算的实时异常行为识别
1. 项目概述 随着物联网和人工智能技术的发展,智能家居安全系统越来越受到人们的关注。本项目旨在设计并实现一套基于边缘计算的智能家居安全系统,利用STM32微控制器和树莓派等边缘设备,实时分析摄像头数据,识别异常行为(如入侵、跌倒等),并及时发出警报,提高家庭安全性。 系…...

C++ //练习 15.30 编写你自己的Basket类,用它计算上一个练习中交易记录的总价格。
C Primer(第5版) 练习 15.30 练习 15.30 编写你自己的Basket类,用它计算上一个练习中交易记录的总价格。 环境:Linux Ubuntu(云服务器) 工具:vim 代码块: /********************…...

3个方法快速找回忘记的PDF文件密码
为确保PDF文件的重要信息不轻易外泄,很多人都会给PDF文件设置打开密码,但伴随着时间的推移,让我们忘记了原本设置的密码,但这时,我们又非常急需要打开编辑这份文件,这时我们该怎么办呢?下面小编…...

排序算法:选择排序,golang实现
目录 前言 选择排序 代码示例 1. 算法包 2. 选择排序代码 3. 模拟排序 4. 运行程序 5. 从大到小排序 循环细节 外层循环 内层循环 总结 选择排序的适用场景 1. 数据规模非常小 2. 稳定性不重要 3. 几乎全部数据已排序 4. 教育目的 前言 在实际场景中…...

【测试】博客系统的测试报告
项目背景 个人博客系统采用了 SSM 框架与 Redis 缓存技术的组合 ,为用户提供了一个功能丰富、性能优越的博客平台。 在技术架构上 ,SSM 框架确保了系统的稳定性和可扩展性。Spring 负责管理项目的各种组件 ,Spring MVC 实现了清晰的请求处理…...

PointCLIP: Point Cloud Understanding by CLIP
Abstract 近年来,基于对比视觉语言预训练(CLIP)的零镜头和少镜头学习在二维视觉识别中表现出了令人鼓舞的效果,该方法在开放词汇设置下学习图像与相应文本的匹配。然而,通过大规模二维图像-文本对预训练的CLIP是否可以推广到三维识别&#x…...

搜索(剪枝)
定义: 剪枝,就是减少搜索树的规模、尽早排除搜索树中不必要分支的一种手段。 在深度优先搜索中,有以下几类常见的剪枝方法: 优化搜索顺序排除等效冗余可行性剪枝最优性剪枝记忆化剪枝 例题1:AcWing 167.木棒 题目:…...

python基础知识点
最近系统温习了一遍python基础语法,把自己不熟知的知识点罗列一遍,便于查阅~~ python教程 Python 基础教程 | 菜鸟教程 1、python标识符 以单下划线开头 _foo 的代表不能直接访问的类属性,需通过类提供的接口进行访问,不能用 f…...

Android SurfaceFlinger——GraphicBuffer获取内存信息(三十一)
上一篇文章介绍了 GraphicBuffer 初始化的 initWithSize() 函数中的申请内存流程,这里我们看一下另一个比较重要的函数,GraphicBufferMapper. getTransportSize 获取内存信息。该函数通常在需要了解缓冲区的实际内存占用情况时调用,例如在调试内存使用情况或优化性能时。 一…...

基于 SASL/SCRAM 让 Kafka 实现动态授权认证
一、说明 在大数据处理和分析中 Apache Kafka 已经成为了一个核心组件。然而在生产环境中部署 Kafka 时,安全性是一个必须要考虑的重要因素。SASL(简单认证与安全层)和 SCRAM(基于密码的认证机制的盐化挑战响应认证机制ÿ…...

通用多级缓件组件
背景 业界第三方缓存框架一般为redis,本地缓地ehcache或guava,一般通过spring提供的restTemplate操作缓存 然而这样会存在以下问题: 与缓存中间件强耦合需手动整合多级缓存不支持注解数据更新时无法自动刷新缓存存在缓存穿透、缓存击穿、缓…...

MindIE Service服务化集成部署通义千问Qwen模型
一、昇腾开发者平台申请镜像 登录Ascend官网昇腾社区-官网丨昇腾万里 让智能无所不及 二、登录并下载mindie镜像 #登录docker login -u XXX#密码XXX#下载镜像docker pull XXX 三、下载Qwen的镜像 使用wget命令下载Qwen1.5-0.5B-Chat镜像,放在/mnt/Qwen/Qwen1.5-…...

chrome 接口请求等待时间(installed 已停止)过长问题定位
参考: 解决实际项目中stalled时间过久的问题 背景: 测试反馈系统开 6 个标签页后, 反应变的很慢 定位: 看接口请求瀑布流, 已停止时间很长, 后端返回速度很快, 确定是前端的问题 推测是并发请求窗口数量的问题, 屏蔽部分一直 pending 的接口, 发现速度正常了, 搜到上面的参…...