当前位置: 首页 > news >正文

灵茶八题 - 子序列 +w+

灵茶八题 - 子序列 +w+

题目描述

给你一个长为 n n n 的数组 a a a,输出它的所有非空子序列的元素和的元素和。

例如 a = [ 1 , 2 , 3 ] a=[1,2,3] a=[1,2,3] 有七个非空子序列 [ 1 ] , [ 2 ] , [ 3 ] , [ 1 , 2 ] , [ 1 , 3 ] , [ 2 , 3 ] , [ 1 , 2 , 3 ] [1],[2],[3],[1,2],[1,3],[2,3],[1,2,3] [1],[2],[3],[1,2],[1,3],[2,3],[1,2,3],元素和分别为 1 , 2 , 3 , 3 , 4 , 5 , 6 1,2,3,3,4,5,6 1,2,3,3,4,5,6,所以答案为 1 + 2 + 3 + 3 + 4 + 5 + 6 = 24 1+2+3+3+4+5+6=24 1+2+3+3+4+5+6=24

由于答案很大,你需要输出答案模 1 0 9 + 7 10^9+7 109+7 后的结果。

输入格式

第一行输入一个整数 n ( 1 ≤ n ≤ 2 ⋅ 1 0 5 ) n\ (1\le n \le 2\cdot 10^5) n (1n2105)

第二行输入 n n n 个整数,表示数组 a a a 中的元素 ( 0 ≤ a [ i ] ≤ 1 0 9 ) (0\le a[i] \le 10^9) (0a[i]109)

输出格式

一个整数,表示 a a a 的所有非空子序列的元素和的元素和,模 1 0 9 + 7 10^9+7 109+7 后的结果。

样例 #1

样例输入 #1

3
1 2 3

样例输出 #1

24

提示

对于子序列, 每一个出现的次数为2的n - 1次方

#include<bits/stdc++.h>using namespace std;typedef long long ll;
typedef pair<int, int>PII;
const int N=2e5+10;
const int MOD = 1e9 + 7;
const int INF=0X3F3F3F3F;
const int dx[]={-1,1,0,0,-1,-1,+1,+1};
const int dy[]={0,0,-1,1,-1,+1,-1,+1};
const int M = 1e7 + 10;int t;int main()
{int n;cin >> n;ll res = 0;//对于子序列,每个元素出现的次数为2的n - 1次方for(int i = 1; i <= n; i ++){int x;cin >> x;res += x;}for(int i = 1; i <= n - 1; i ++){res = res * 2 % MOD;}cout << res << endl;return 0;
}

相关文章:

灵茶八题 - 子序列 +w+

灵茶八题 - 子序列 w 题目描述 给你一个长为 n n n 的数组 a a a&#xff0c;输出它的所有非空子序列的元素和的元素和。 例如 a [ 1 , 2 , 3 ] a[1,2,3] a[1,2,3] 有七个非空子序列 [ 1 ] , [ 2 ] , [ 3 ] , [ 1 , 2 ] , [ 1 , 3 ] , [ 2 , 3 ] , [ 1 , 2 , 3 ] [1],[…...

为什么美元债务会越来越多?

美元债务规模持续膨胀&#xff0c;其背后原因复杂多样&#xff0c;可归结为以下几个主要因素&#xff1a; 财政赤字和刺激政策是导致美元债务增加的重要原因。美国政府长期面临财政赤字问题&#xff0c;支出远超收入&#xff0c;为弥补这一缺口&#xff0c;政府不得不大量发行…...

二维凸包算法 Julia实现

问题描述&#xff1a;给定平面上 n n n 个点的集合 Q Q Q&#xff0c;求其子集 P P P 构成 Q Q Q 的凸包&#xff0c;即 ∀ p ∈ Q , ∃ p 0 , p 1 , p 2 ∈ P \forall p \in Q, \exist p_0, p_1, p_2 \in P ∀p∈Q,∃p0​,p1​,p2​∈P 使得点 p p p 在以点 p 0 , p 1 …...

python dash框架

Dash 是一个用于创建数据分析型 web 应用的 Python 框架。它由 Plotly 团队开发&#xff0c;并且可以用来构建交互式的 web 应用程序&#xff0c;这些应用能够包含图表、表格、地图等多种数据可视化组件。 Dash 的特点&#xff1a; 易于使用&#xff1a;Dash 使用 Python 语法…...

2.外部中断(EXTI)

理论 NVIC&#xff1a;嵌套向量中断控制器&#xff08;解释教程&#xff09; 外部通用中断线(EXTI0~EXTI15)&#xff1a;每个GPIO设置成中断模式&#xff0c;与中断控制器连接的线 外部中断触发方式 上升沿触发、下降沿触发、双边沿触发 外部中断触发函数 在stm32f1xx_it.c文件…...

Python | SyntaxError: invalid syntax 深度解析

Python | SyntaxError: invalid syntax 深度解析 在Python编程中&#xff0c;SyntaxError: invalid syntax是一个常见的错误&#xff0c;它表明Python解释器在尝试解析代码时遇到了语法问题。这个错误通常是由于代码中存在拼写错误、缺少符号&#xff08;如括号、冒号或逗号&a…...

付费进群系统源码原版最新修复全开源版

付费进群&#xff0c;和平时所见到的别人拉你进群是不一样的&#xff0c;付费进群需要先缴费以后&#xff0c;才会看到群的二维码&#xff0c;扫码进群或者是长按二维码图片识别进群&#xff0c;付费进群这个功能广泛应用于拼多多的砍价群&#xff0c;活动的助力群&#xff0c;…...

Docker容器部署的SpringBoot项目jar包,上传文件但是找不到路径的问题

在docker容器内部署的jar包运行后&#xff0c;请求访问都没有问题&#xff0c;在文件上传时&#xff0c;发现上传图片接口响应成功&#xff0c;但是图片路径报404错误&#xff0c;发现找不到路径。 在服务器上查看也没有找到相关图片。 原因&#xff1a; 启动docker镜像时没…...

云计算学习——5G网络技术

系列文章目录 提示&#xff1a;仅用于个人学习&#xff0c;进行查漏补缺使用。 Day1 网络参考模型 Day2 网络综合布线与应用 Day3 IP地址 Day4 华为eNSP网络设备模拟器的基础安装及简单使用 Day5 交换机的基本原理与配置 Day6 路由器的原理与配置 Day7 网络层协议介绍一 Day8 传…...

matlab仿真 信道编码和交织(上)

&#xff08;内容源自详解MATLAB&#xff0f;SIMULINK 通信系统建模与仿真 刘学勇编著第八章内容&#xff0c;有兴趣的读者请阅读原书&#xff09; ​​​ ​ ​ ​ clear all N10;%信息比特的行数 n7;%hamming码组长度n2^m-1 m3;%监督位长度 [H,G]hammgen(m);%产生(n,n-…...

基于YOLOv8的高压输电线路异物检测系统

基于YOLOv8的高压输电线路异物检测系统 (价格88) 包含 【“鸟窝”&#xff0c;“风筝”&#xff0c;“气球”&#xff0c;“垃圾”】 4个类 通过PYQT构建UI界面&#xff0c;包含图片检测&#xff0c;视频检测&#xff0c;摄像头实时检测。 &#xff08;该系统可以根据数…...

23款奔驰GLS450加装原厂电吸门配置,提升车辆舒适性和便利性

今天是一台22款奔驰GLS450&#xff0c;车主是佛山的 以前被不良商家坑了 装了副厂的电吸门 刚开始就很正常 用了半年之后 就开始开不了门&#xff0c;被锁在里面&#xff0c;刚开始车主以为是零件坏了 后来越来越频繁&#xff0c;本来是为了家里老人小孩关门方便而升级的&#…...

git操作流程笔记

1、在本地项目文件夹右击鼠标点击Git Bash Here 2、输入git init&#xff0c;这个目录变成git可以管理的仓库&#xff0c;会出现一个.git文件夹&#xff0c;如果没出现的话需要选择“显示隐藏文件”&#xff08;不会的同学自行百度一下&#xff09; 3、绑定本地仓库与远程仓库…...

【QT】常用控件-上

欢迎来到Cefler的博客&#x1f601; &#x1f54c;博客主页&#xff1a;折纸花满衣 目录 &#x1f449;&#x1f3fb;QWidgetenabledgeometryrect制作上下左右按钮 window frame 的影响window titlewindowIcon代码示例: 通过 qrc 管理图片作为图标 windowOpacitycursor使用qrc自…...

帮助网站提升用户参与度的5个WordPress插件

仅靠编写精彩的内容、设计精美的图像和创建简化的客户旅程不足以提高网站参与度。您需要让用户在首次访问后继续与您的网站互动并成为回访者&#xff0c;才能真正吸引您所追求的兴趣。 幸运的是&#xff0c;对于 WordPress 用户来说&#xff0c;有数百种工具可用于提高用户参与…...

理解 Python 中的 @wraps:保留函数元数据

一.介绍 在本文中&#xff0c;我们将了解 wraps。在 Python 中使用装饰器时&#xff0c;您可能会遇到原始函数的元数据丢失的情况。这时&#xff0c;functools 模块中的 wraps 装饰器就可以派上用场了。让我们深入了解 wraps 的作用及其重要性。 二.简单装饰器的问题 首先&a…...

cjson

文章目录 概述编译cjson_test 小结 概述 在网络传输中&#xff0c;网络数据序列化&#xff0c;常用的有那么几种&#xff0c;json&#xff0c;protobuf都是很常用的&#xff0c;这一篇来写下json。 Json常用的有几个&#xff0c;rapidjson&#xff0c;jsoncpp&#xff0c;还有…...

Docker data root 目录更改

有时候受限于系统根目录空间的限制&#xff0c;需要将 docker data root 目录更改为其它目录&#xff0c;如单独挂载一个磁盘或存储。本篇文章介绍如何操作。 修改docker 工作目录 修改配置文件/etc/docker/daemon.json&#xff08;在19.x 版本之前使用grapth&#xff09; {&q…...

[CR]厚云填补_SEGDNet

Structure-transferring edge-enhanced grid dehazing network Abstract 在过去的二十年里&#xff0c;图像去雾问题在计算机视觉界受到了极大的关注。在雾霾条件下&#xff0c;由于空气中水汽和粉尘颗粒的散射&#xff0c;图像的清晰度严重降低&#xff0c;使得许多计算机视觉…...

图-基础概念

是什么 图是一种抽象的数据类型&#xff0c;在图中的数据元素通常称作节点&#xff0c;V是所以定点的集合&#xff0c;E是所有边的集合 图的分类 有向图 如果两个订单v&#xff0c;w&#xff0c;只能由v向w&#xff0c;而不能w向v&#xff0c;那么我们就把何种情况叫做一个从…...

KubeSphere 容器平台高可用:环境搭建与可视化操作指南

Linux_k8s篇 欢迎来到Linux的世界&#xff0c;看笔记好好学多敲多打&#xff0c;每个人都是大神&#xff01; 题目&#xff1a;KubeSphere 容器平台高可用&#xff1a;环境搭建与可视化操作指南 版本号: 1.0,0 作者: 老王要学习 日期: 2025.06.05 适用环境: Ubuntu22 文档说…...

K8S认证|CKS题库+答案| 11. AppArmor

目录 11. AppArmor 免费获取并激活 CKA_v1.31_模拟系统 题目 开始操作&#xff1a; 1&#xff09;、切换集群 2&#xff09;、切换节点 3&#xff09;、切换到 apparmor 的目录 4&#xff09;、执行 apparmor 策略模块 5&#xff09;、修改 pod 文件 6&#xff09;、…...

Day131 | 灵神 | 回溯算法 | 子集型 子集

Day131 | 灵神 | 回溯算法 | 子集型 子集 78.子集 78. 子集 - 力扣&#xff08;LeetCode&#xff09; 思路&#xff1a; 笔者写过很多次这道题了&#xff0c;不想写题解了&#xff0c;大家看灵神讲解吧 回溯算法套路①子集型回溯【基础算法精讲 14】_哔哩哔哩_bilibili 完…...

理解 MCP 工作流:使用 Ollama 和 LangChain 构建本地 MCP 客户端

&#x1f31f; 什么是 MCP&#xff1f; 模型控制协议 (MCP) 是一种创新的协议&#xff0c;旨在无缝连接 AI 模型与应用程序。 MCP 是一个开源协议&#xff0c;它标准化了我们的 LLM 应用程序连接所需工具和数据源并与之协作的方式。 可以把它想象成你的 AI 模型 和想要使用它…...

cf2117E

原题链接&#xff1a;https://codeforces.com/contest/2117/problem/E 题目背景&#xff1a; 给定两个数组a,b&#xff0c;可以执行多次以下操作&#xff1a;选择 i (1 < i < n - 1)&#xff0c;并设置 或&#xff0c;也可以在执行上述操作前执行一次删除任意 和 。求…...

【python异步多线程】异步多线程爬虫代码示例

claude生成的python多线程、异步代码示例&#xff0c;模拟20个网页的爬取&#xff0c;每个网页假设要0.5-2秒完成。 代码 Python多线程爬虫教程 核心概念 多线程&#xff1a;允许程序同时执行多个任务&#xff0c;提高IO密集型任务&#xff08;如网络请求&#xff09;的效率…...

IT供电系统绝缘监测及故障定位解决方案

随着新能源的快速发展&#xff0c;光伏电站、储能系统及充电设备已广泛应用于现代能源网络。在光伏领域&#xff0c;IT供电系统凭借其持续供电性好、安全性高等优势成为光伏首选&#xff0c;但在长期运行中&#xff0c;例如老化、潮湿、隐裂、机械损伤等问题会影响光伏板绝缘层…...

GC1808高性能24位立体声音频ADC芯片解析

1. 芯片概述 GC1808是一款24位立体声音频模数转换器&#xff08;ADC&#xff09;&#xff0c;支持8kHz~96kHz采样率&#xff0c;集成Δ-Σ调制器、数字抗混叠滤波器和高通滤波器&#xff0c;适用于高保真音频采集场景。 2. 核心特性 高精度&#xff1a;24位分辨率&#xff0c…...

Android第十三次面试总结(四大 组件基础)

Activity生命周期和四大启动模式详解 一、Activity 生命周期 Activity 的生命周期由一系列回调方法组成&#xff0c;用于管理其创建、可见性、焦点和销毁过程。以下是核心方法及其调用时机&#xff1a; ​onCreate()​​ ​调用时机​&#xff1a;Activity 首次创建时调用。​…...

html css js网页制作成品——HTML+CSS榴莲商城网页设计(4页)附源码

目录 一、&#x1f468;‍&#x1f393;网站题目 二、✍️网站描述 三、&#x1f4da;网站介绍 四、&#x1f310;网站效果 五、&#x1fa93; 代码实现 &#x1f9f1;HTML 六、&#x1f947; 如何让学习不再盲目 七、&#x1f381;更多干货 一、&#x1f468;‍&#x1f…...