【2024年华数杯C题老外游中国】(完整题解+代码+完整参考论文)
请问 352 个城市中所有 35200 个景点评分的最高分(Best Score,简称 BS)是多少?全国有多少个景点获评了这个最高评分(BS)?获评了这个最高评分(BS)景点最多的城市有哪些?依据拥有最高评分(BS)景点数量的多少排序,列出前 10 个城市。
:数据准备
解题步骤
读取所有城市的景点评分数据:
我们需要将所有城市的 CSV 文件合并到一个 DataFrame 中。
计算最高评分(BS):
从合并后的 DataFrame 中找出所有景点评分的最高分。
统计获得最高评分的景点数量:
统计每个城市中获得最高评分的景点数量,并找出这些城市中获得最多的前 10 个城市。
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as pltdef generate_mock_data(num_cities=352, num_sights_per_city=100):data = []for city_id in range(1, num_cities + 1):for sight_id in range(1, num_sights_per_city + 1):data.append({'city_id': city_id,'sight_name': f'Sight_{city_id}_{sight_id}','score': np.random.randint(60, 101) # 评分在60到100之间})return pd.DataFrame(data)mock_data = generate_mock_data()# 找到每个城市评分最高的景点
city_best_scores = mock_data.loc[mock_data.groupby('city_id')['score'].idxmax()]# 找到所有景点的最高评分(BS)
best_score = city_best_scores['score'].max()# 统计全国有多少个景点获得了这个最高评分(BS)
num_best_sights = (mock_data['score'] == best_score).sum()# 统计每个城市有多少个景点获得了这个最高评分(BS)
city_best_sight_counts = mock_data[mock_data['score'] == best_score]['city_id'].value_counts().head(10)# 创建一个DataFrame用于可视化
visual_data = city_best_sight_counts.reset_index()
visual_data.columns = ['city_id', 'count']# 使用Seaborn进行增强样式的条形图可视化
plt.figure(figsize=(14, 10))
sns.barplot(x='city_id', y='count', data=visual_data, palette='viridis')# 添加标题和标签
plt.title(f'Top 10 Cities with the Most Best Scored Sights (BS = {best_score})', fontsize=16)
plt.xlabel('City ID', fontsize=14)
plt.ylabel('Number of Best Scored Sights', fontsize=14)# 显示图表
plt.show()# 打印结果
print(f'最高评分(BS):{best_score}')
print(f'获得最高评分(BS)的景点数量:{num_best_sights}')
print(f'拥有最多最高评分(BS)景点的前10个城市:')
print(city_best_sight_counts)
这不是完整代码。

要解决这个问题,我们需要分析一个包含352个城市和每个城市100个景点评分的旅游景点数据集。目标是找出所有景点评分中的最高分,以及获得最高评分景点最多的城市。以下是解题和建模过程:
数据预处理
读取数据:读取每个城市的csv文件,提取每个景点的信息。
提取评分信息:从每个景点的信息中提取评分,并记录每个景点的名称和评分。
找出最高评分(Best Score,BS)
找出最高评分:遍历所有景点,找出最高评分。
找出获得最高评分(BS)的景点数量
统计最高评分景点:统计每个城市中获得最高评分的景点数量。
找出拥有最多最高评分(BS)景点的城市
排序城市:根据每个城市中最高评分景点的数量进行排序,找出前10个城市。
老外游中国—重要
【文档】2024 华数杯C题老外游中国解题文档
https://docs.qq.com/doc/DU1RBWG9aUXVUYUhF
截图:
压缩包包含以下内容:
● 解题代码(已打包,可运行)
● 代码解析
● 解题思路
● 完整解题文章(37页)

预览图如下:

相关文章:
【2024年华数杯C题老外游中国】(完整题解+代码+完整参考论文)
请问 352 个城市中所有 35200 个景点评分的最高分(Best Score,简称 BS)是多少?全国有多少个景点获评了这个最高评分(BS)?获评了这个最高评分(BS)景点最多的城市有哪些&am…...
全球氢化双酚A (HBPA)市场规划预测:2030年市场规模将接近1330亿元,未来六年CAGR为2.7%
一、引言 随着全球化工行业的持续发展,氢化双酚A (HBPA)作为重要的化工原料,其市场重要性日益凸显。本文旨在探索HBPA行业的发展趋势、潜在商机及其未来展望。 二、市场趋势 全球HBPA市场的增长主要受全球化工行业增加、消费者对高性能化工产品要求提高…...
【C++】异常处理:深度解析与实战精髓,不容错过的编程秘籍
🌈 个人主页:Zfox_ 🔥 系列专栏:C从入门到精通 目录 🚀 前言:C语言传统的处理错误的方式 一: 🔥 C异常概念二: 🔥 异常的使用 2.1 📖 异常的抛出和…...
智能指针的循环引用 是什么 怎么引起的
智能指针的循环引用 是什么 怎么引起的 智能指针的循环引用(Circular Reference)是指两个或多个对象之间的共享指针相互引用,导致这些对象永远不会被释放,从而引发内存泄露。主要发生在使用std::shared_ptr时,因为它们…...
Stegdetect教程:如何用Stegdetect检测和破解JPG图像隐写信息
一、Stegdetect简介 Stegdetect 是一个开源工具,专门设计用于检测图像文件(JPG格式)中的隐写信息。Stegdetect 可以检测多种常见的隐写方法,比如 JSteg、JPHide 和 OutGuess 等。 二、使用Stegdetect检测图像隐写 官方描述&#…...
Co-Detr
参考:https://www.bilibili.com/video/BV1Sh4y1F7ur/?spm_id_from333.788&vd_source156234c72054035c149dcb072202e6be 之前的detr正样本数量少,匹配不平衡。 主要修改两个地方:encoder和decoder。 1.在encoder之后加入RPN,a…...
校园选课助手【1】-项目整体架构从此开始
项目背景 随着高校招生规模的不断扩大,学生选课需求日益增长。为提高选课效率,降低学生选课压力,本项目旨在开发一款校园选课助手软件。 项目目标:开发一款具有以下特点的校园选课助手软件: 易用性:界面简洁ÿ…...
椭圆曲线加法运算
1. 定义 椭圆曲线 (Elliptic Curve) 不是函数,而是一条平面曲线,其方程是定义如下: y 2 x 3 a x b y^2x^3axb y2x3axb 其中,判别式 Δ − 16 ( 4 a 3 27 b 2 ) ≠ 0 \Delta -16(4a^327b^2)\neq 0 Δ−16(4a327b2)0。判别…...
(STM32笔记)九、RCC时钟树与时钟 第一部分
我用的是正点的STM32F103来进行学习,板子和教程是野火的指南者。 之后的这个系列笔记开头未标明的话,用的也是这个板子和教程。 九、RCC时钟树与时钟 九、RCC时钟树与时钟1、时钟树HSE时钟HSI时钟锁相环时钟系统时钟HCLK时钟PCLK1时钟PCLK2时钟RTC时钟独…...
fastjson-流程分析
参考视频:fasfjson反序列化漏洞1-流程分析 分析版本 fastjson1.2.24 JDK 8u65 分析过程 新建Person类 public class Person {private String name;private int age;public Person() {System.out.println("constructor_0");}public Person(String na…...
Linux 命令安装
系列文章目录 提示:仅用于个人学习,进行查漏补缺使用。 1.Linux介绍、目录结构、文件基本属性、Shell 2.Linux常用命令 3.Linux文件管理 4.Linux 命令安装 提示:写完文章后,目录可以自动生成,如何生成可参考右边的帮助…...
清华和字节联合推出的视频理解大模型video-SALMONN(ICML 2024)
video-SALMONN: Speech-Enhanced Audio-Visual Large Language Models 论文信息 paper:https://arxiv.org/abs/2406.15704 code:https://github.com/bytedance/SALMONN/ AI也会「刷抖音」!清华领衔发布短视频全模态理解新模型 | ICML 2024 …...
从数据爬取到可视化展示:Flask框架与ECharts深度解析
目录 🔹 Flask框架源码解析 Flask应用初始化路由与视图函数请求与响应中间件 🔹 ECharts可视化精讲 ECharts安装与配置基本图表类型图表样式与交互高级图表配置与数据动态更新实战:结合Flask与ECharts展示爬取数据 Flask框架源码解析 &…...
【jvm】类加载分几步
目录 1. 加载(Loading)2. 链接(Linking)2.1 验证(Verification)2.2 准备(Preparation)2.3 解析(Resolution) 3. 初始化(Initialization࿰…...
使用Apache http client发送json数据(demo)
POM依赖 : <dependency><groupId>org.apache.httpcomponents</groupId><artifactId>httpclient</artifactId><version>4.5.12</version></dependency><dependency><groupId>com.alibaba</groupId&g…...
读零信任网络:在不可信网络中构建安全系统07设备信任
1. 设备信任 1.1. 在零信任网络中建立设备信任至关重要,这也是非常困难的一个环节 1.2. 建立设备信任是基石,直接影响零信任网络架构的成败 1.3. 大多数网络安全事件都和攻击者获得信任设备的控制权相关,这种情况一旦发生,信任…...
【Java算法专场】前缀和(下)
目录 和为 K 的子数组 算法分析 算法步骤 算法代码 算法示例 和可被 K 整除的子数组 算法分析 同余定理 负数取余 算法步骤 算法代码 算法示例 连续数组 算法分析 算法步骤 算法代码 算法示例 矩阵区域和 算法分析 算法步骤 算法代码 算法示例 算法分析 …...
音视频相关文章总目录
为了方便各位观看,本文置顶,以目录形式汇集我写过的大部分音视频专题文章。之后文章更新,本目录也会同步更新。写得不好和零零散散的文章就不放在这里了😅 : 音视频入门基础:像素格式专题系列文章&#x…...
7月31日MySQL学习笔记
今日内容: mysql: 行列转换 数据类型 函数 触发器 存储过程 事务 索引(还没讲) 三范式 JDBC连接数据库的6个步骤 三握四挥 行列转换 第一步 新建要转换的列 select name, 1 as 语文, 1 as 数学, 1 as 英语 from t_score GROUP BY name 第二步 对每一列填入值…...
什么是容器查询?分享 1 段优质 CSS 代码片段!
本内容首发于工粽号:程序员大澈,每日分享一段优质代码片段,欢迎关注和投稿! 大家好,我是大澈! 本文约 700 字,整篇阅读约需 1 分钟。 今天分享一段优质 CSS 代码片段,使用容器查询…...
stm32G473的flash模式是单bank还是双bank?
今天突然有人stm32G473的flash模式是单bank还是双bank?由于时间太久,我真忘记了。搜搜发现,还真有人和我一样。见下面的链接:https://shequ.stmicroelectronics.cn/forum.php?modviewthread&tid644563 根据STM32G4系列参考手…...
MongoDB学习和应用(高效的非关系型数据库)
一丶 MongoDB简介 对于社交类软件的功能,我们需要对它的功能特点进行分析: 数据量会随着用户数增大而增大读多写少价值较低非好友看不到其动态信息地理位置的查询… 针对以上特点进行分析各大存储工具: mysql:关系型数据库&am…...
ssc377d修改flash分区大小
1、flash的分区默认分配16M、 / # df -h Filesystem Size Used Available Use% Mounted on /dev/root 1.9M 1.9M 0 100% / /dev/mtdblock4 3.0M...
蓝牙 BLE 扫描面试题大全(2):进阶面试题与实战演练
前文覆盖了 BLE 扫描的基础概念与经典问题蓝牙 BLE 扫描面试题大全(1):从基础到实战的深度解析-CSDN博客,但实际面试中,企业更关注候选人对复杂场景的应对能力(如多设备并发扫描、低功耗与高发现率的平衡)和前沿技术的…...
PL0语法,分析器实现!
简介 PL/0 是一种简单的编程语言,通常用于教学编译原理。它的语法结构清晰,功能包括常量定义、变量声明、过程(子程序)定义以及基本的控制结构(如条件语句和循环语句)。 PL/0 语法规范 PL/0 是一种教学用的小型编程语言,由 Niklaus Wirth 设计,用于展示编译原理的核…...
中医有效性探讨
文章目录 西医是如何发展到以生物化学为药理基础的现代医学?传统医学奠基期(远古 - 17 世纪)近代医学转型期(17 世纪 - 19 世纪末)现代医学成熟期(20世纪至今) 中医的源远流长和一脉相承远古至…...
虚拟电厂发展三大趋势:市场化、技术主导、车网互联
市场化:从政策驱动到多元盈利 政策全面赋能 2025年4月,国家发改委、能源局发布《关于加快推进虚拟电厂发展的指导意见》,首次明确虚拟电厂为“独立市场主体”,提出硬性目标:2027年全国调节能力≥2000万千瓦࿰…...
[免费]微信小程序问卷调查系统(SpringBoot后端+Vue管理端)【论文+源码+SQL脚本】
大家好,我是java1234_小锋老师,看到一个不错的微信小程序问卷调查系统(SpringBoot后端Vue管理端)【论文源码SQL脚本】,分享下哈。 项目视频演示 【免费】微信小程序问卷调查系统(SpringBoot后端Vue管理端) Java毕业设计_哔哩哔哩_bilibili 项…...
系统掌握PyTorch:图解张量、Autograd、DataLoader、nn.Module与实战模型
本文较长,建议点赞收藏,以免遗失。更多AI大模型应用开发学习视频及资料,尽在聚客AI学院。 本文通过代码驱动的方式,系统讲解PyTorch核心概念和实战技巧,涵盖张量操作、自动微分、数据加载、模型构建和训练全流程&#…...
uniapp 实现腾讯云IM群文件上传下载功能
UniApp 集成腾讯云IM实现群文件上传下载功能全攻略 一、功能背景与技术选型 在团队协作场景中,群文件共享是核心需求之一。本文将介绍如何基于腾讯云IMCOS,在uniapp中实现: 群内文件上传/下载文件元数据管理下载进度追踪跨平台文件预览 二…...
