当前位置: 首页 > news >正文

【2024年华数杯C题老外游中国】(完整题解+代码+完整参考论文)

请问 352 个城市中所有 35200 个景点评分的最高分(Best Score,简称 BS)是多少?全国有多少个景点获评了这个最高评分(BS)?获评了这个最高评分(BS)景点最多的城市有哪些?依据拥有最高评分(BS)景点数量的多少排序,列出前 10 个城市。
:数据准备
解题步骤
读取所有城市的景点评分数据:
我们需要将所有城市的 CSV 文件合并到一个 DataFrame 中。
计算最高评分(BS):
从合并后的 DataFrame 中找出所有景点评分的最高分。
统计获得最高评分的景点数量:
统计每个城市中获得最高评分的景点数量,并找出这些城市中获得最多的前 10 个城市。

import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as pltdef generate_mock_data(num_cities=352, num_sights_per_city=100):data = []for city_id in range(1, num_cities + 1):for sight_id in range(1, num_sights_per_city + 1):data.append({'city_id': city_id,'sight_name': f'Sight_{city_id}_{sight_id}','score': np.random.randint(60, 101)  # 评分在60到100之间})return pd.DataFrame(data)mock_data = generate_mock_data()# 找到每个城市评分最高的景点
city_best_scores = mock_data.loc[mock_data.groupby('city_id')['score'].idxmax()]# 找到所有景点的最高评分(BS)
best_score = city_best_scores['score'].max()# 统计全国有多少个景点获得了这个最高评分(BS)
num_best_sights = (mock_data['score'] == best_score).sum()# 统计每个城市有多少个景点获得了这个最高评分(BS)
city_best_sight_counts = mock_data[mock_data['score'] == best_score]['city_id'].value_counts().head(10)# 创建一个DataFrame用于可视化
visual_data = city_best_sight_counts.reset_index()
visual_data.columns = ['city_id', 'count']# 使用Seaborn进行增强样式的条形图可视化
plt.figure(figsize=(14, 10))
sns.barplot(x='city_id', y='count', data=visual_data, palette='viridis')# 添加标题和标签
plt.title(f'Top 10 Cities with the Most Best Scored Sights (BS = {best_score})', fontsize=16)
plt.xlabel('City ID', fontsize=14)
plt.ylabel('Number of Best Scored Sights', fontsize=14)# 显示图表
plt.show()# 打印结果
print(f'最高评分(BS):{best_score}')
print(f'获得最高评分(BS)的景点数量:{num_best_sights}')
print(f'拥有最多最高评分(BS)景点的前10个城市:')
print(city_best_sight_counts)

这不是完整代码。

在这里插入图片描述
要解决这个问题,我们需要分析一个包含352个城市和每个城市100个景点评分的旅游景点数据集。目标是找出所有景点评分中的最高分,以及获得最高评分景点最多的城市。以下是解题和建模过程:
数据预处理
读取数据:读取每个城市的csv文件,提取每个景点的信息。
提取评分信息:从每个景点的信息中提取评分,并记录每个景点的名称和评分。
找出最高评分(Best Score,BS)
找出最高评分:遍历所有景点,找出最高评分。
找出获得最高评分(BS)的景点数量
统计最高评分景点:统计每个城市中获得最高评分的景点数量。
找出拥有最多最高评分(BS)景点的城市
排序城市:根据每个城市中最高评分景点的数量进行排序,找出前10个城市。

老外游中国—重要

【文档】2024 华数杯C题老外游中国解题文档

https://docs.qq.com/doc/DU1RBWG9aUXVUYUhF

截图:
压缩包包含以下内容:
● 解题代码(已打包,可运行)
● 代码解析
● 解题思路
● 完整解题文章(37页)

在这里插入图片描述
预览图如下:

在这里插入图片描述

相关文章:

【2024年华数杯C题老外游中国】(完整题解+代码+完整参考论文)

请问 352 个城市中所有 35200 个景点评分的最高分(Best Score,简称 BS)是多少?全国有多少个景点获评了这个最高评分(BS)?获评了这个最高评分(BS)景点最多的城市有哪些&am…...

全球氢化双酚A (HBPA)市场规划预测:2030年市场规模将接近1330亿元,未来六年CAGR为2.7%

一、引言 随着全球化工行业的持续发展,氢化双酚A (HBPA)作为重要的化工原料,其市场重要性日益凸显。本文旨在探索HBPA行业的发展趋势、潜在商机及其未来展望。 二、市场趋势 全球HBPA市场的增长主要受全球化工行业增加、消费者对高性能化工产品要求提高…...

【C++】异常处理:深度解析与实战精髓,不容错过的编程秘籍

🌈 个人主页:Zfox_ 🔥 系列专栏:C从入门到精通 目录 🚀 前言:C语言传统的处理错误的方式 一: 🔥 C异常概念二: 🔥 异常的使用 2.1 📖 异常的抛出和…...

智能指针的循环引用 是什么 怎么引起的

智能指针的循环引用 是什么 怎么引起的 智能指针的循环引用(Circular Reference)是指两个或多个对象之间的共享指针相互引用,导致这些对象永远不会被释放,从而引发内存泄露。主要发生在使用std::shared_ptr时,因为它们…...

Stegdetect教程:如何用Stegdetect检测和破解JPG图像隐写信息

一、Stegdetect简介 Stegdetect 是一个开源工具,专门设计用于检测图像文件(JPG格式)中的隐写信息。Stegdetect 可以检测多种常见的隐写方法,比如 JSteg、JPHide 和 OutGuess 等。 二、使用Stegdetect检测图像隐写 官方描述&#…...

Co-Detr

参考:https://www.bilibili.com/video/BV1Sh4y1F7ur/?spm_id_from333.788&vd_source156234c72054035c149dcb072202e6be 之前的detr正样本数量少,匹配不平衡。 主要修改两个地方:encoder和decoder。 1.在encoder之后加入RPN,a…...

校园选课助手【1】-项目整体架构从此开始

项目背景 随着高校招生规模的不断扩大,学生选课需求日益增长。为提高选课效率,降低学生选课压力,本项目旨在开发一款校园选课助手软件。 项目目标:开发一款具有以下特点的校园选课助手软件: 易用性:界面简洁&#xff…...

椭圆曲线加法运算

1. 定义 椭圆曲线 (Elliptic Curve) 不是函数,而是一条平面曲线,其方程是定义如下: y 2 x 3 a x b y^2x^3axb y2x3axb 其中,判别式 Δ − 16 ( 4 a 3 27 b 2 ) ≠ 0 \Delta -16(4a^327b^2)\neq 0 Δ−16(4a327b2)0。判别…...

(STM32笔记)九、RCC时钟树与时钟 第一部分

我用的是正点的STM32F103来进行学习,板子和教程是野火的指南者。 之后的这个系列笔记开头未标明的话,用的也是这个板子和教程。 九、RCC时钟树与时钟 九、RCC时钟树与时钟1、时钟树HSE时钟HSI时钟锁相环时钟系统时钟HCLK时钟PCLK1时钟PCLK2时钟RTC时钟独…...

fastjson-流程分析

参考视频:fasfjson反序列化漏洞1-流程分析 分析版本 fastjson1.2.24 JDK 8u65 分析过程 新建Person类 public class Person {private String name;private int age;public Person() {System.out.println("constructor_0");}public Person(String na…...

Linux 命令安装

系列文章目录 提示:仅用于个人学习,进行查漏补缺使用。 1.Linux介绍、目录结构、文件基本属性、Shell 2.Linux常用命令 3.Linux文件管理 4.Linux 命令安装 提示:写完文章后,目录可以自动生成,如何生成可参考右边的帮助…...

清华和字节联合推出的视频理解大模型video-SALMONN(ICML 2024)

video-SALMONN: Speech-Enhanced Audio-Visual Large Language Models 论文信息 paper:https://arxiv.org/abs/2406.15704 code:https://github.com/bytedance/SALMONN/ AI也会「刷抖音」!清华领衔发布短视频全模态理解新模型 | ICML 2024 …...

从数据爬取到可视化展示:Flask框架与ECharts深度解析

目录 🔹 Flask框架源码解析 Flask应用初始化路由与视图函数请求与响应中间件 🔹 ECharts可视化精讲 ECharts安装与配置基本图表类型图表样式与交互高级图表配置与数据动态更新实战:结合Flask与ECharts展示爬取数据 Flask框架源码解析 &…...

【jvm】类加载分几步

目录 1. 加载(Loading)2. 链接(Linking)2.1 验证(Verification)2.2 准备(Preparation)2.3 解析(Resolution) 3. 初始化(Initialization&#xff0…...

使用Apache http client发送json数据(demo)

POM依赖 &#xff1a; <dependency><groupId>org.apache.httpcomponents</groupId><artifactId>httpclient</artifactId><version>4.5.12</version></dependency><dependency><groupId>com.alibaba</groupId&g…...

读零信任网络:在不可信网络中构建安全系统07设备信任

1. 设备信任 1.1. 在零信任网络中建立设备信任至关重要&#xff0c;这也是非常困难的一个环节 1.2. 建立设备信任是基石&#xff0c;直接影响零信任网络架构的成败 1.3. 大多数网络安全事件都和攻击者获得信任设备的控制权相关&#xff0c;这种情况一旦发生&#xff0c;信任…...

【Java算法专场】前缀和(下)

目录 和为 K 的子数组 算法分析 算法步骤 算法代码 算法示例 和可被 K 整除的子数组 算法分析 同余定理 负数取余 算法步骤 算法代码 算法示例 连续数组 算法分析 算法步骤 算法代码 算法示例 矩阵区域和 算法分析 算法步骤 算法代码 算法示例 算法分析 …...

音视频相关文章总目录

为了方便各位观看&#xff0c;本文置顶&#xff0c;以目录形式汇集我写过的大部分音视频专题文章。之后文章更新&#xff0c;本目录也会同步更新。写得不好和零零散散的文章就不放在这里了&#x1f605; &#xff1a; 音视频入门基础&#xff1a;像素格式专题系列文章&#x…...

7月31日MySQL学习笔记

今日内容: mysql: 行列转换 数据类型 函数 触发器 存储过程 事务 索引(还没讲) 三范式 JDBC连接数据库的6个步骤 三握四挥 行列转换 第一步 新建要转换的列 select name, 1 as 语文, 1 as 数学, 1 as 英语 from t_score GROUP BY name 第二步 对每一列填入值…...

什么是容器查询?分享 1 段优质 CSS 代码片段!

本内容首发于工粽号&#xff1a;程序员大澈&#xff0c;每日分享一段优质代码片段&#xff0c;欢迎关注和投稿&#xff01; 大家好&#xff0c;我是大澈&#xff01; 本文约 700 字&#xff0c;整篇阅读约需 1 分钟。 今天分享一段优质 CSS 代码片段&#xff0c;使用容器查询…...

多云管理“拦路虎”:深入解析网络互联、身份同步与成本可视化的技术复杂度​

一、引言&#xff1a;多云环境的技术复杂性本质​​ 企业采用多云策略已从技术选型升维至生存刚需。当业务系统分散部署在多个云平台时&#xff0c;​​基础设施的技术债呈现指数级积累​​。网络连接、身份认证、成本管理这三大核心挑战相互嵌套&#xff1a;跨云网络构建数据…...

调用支付宝接口响应40004 SYSTEM_ERROR问题排查

在对接支付宝API的时候&#xff0c;遇到了一些问题&#xff0c;记录一下排查过程。 Body:{"datadigital_fincloud_generalsaas_face_certify_initialize_response":{"msg":"Business Failed","code":"40004","sub_msg…...

论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(二)

HoST框架核心实现方法详解 - 论文深度解读(第二部分) 《Learning Humanoid Standing-up Control across Diverse Postures》 系列文章: 论文深度解读 + 算法与代码分析(二) 作者机构: 上海AI Lab, 上海交通大学, 香港大学, 浙江大学, 香港中文大学 论文主题: 人形机器人…...

盘古信息PCB行业解决方案:以全域场景重构,激活智造新未来

一、破局&#xff1a;PCB行业的时代之问 在数字经济蓬勃发展的浪潮中&#xff0c;PCB&#xff08;印制电路板&#xff09;作为 “电子产品之母”&#xff0c;其重要性愈发凸显。随着 5G、人工智能等新兴技术的加速渗透&#xff0c;PCB行业面临着前所未有的挑战与机遇。产品迭代…...

ssc377d修改flash分区大小

1、flash的分区默认分配16M、 / # df -h Filesystem Size Used Available Use% Mounted on /dev/root 1.9M 1.9M 0 100% / /dev/mtdblock4 3.0M...

如何在看板中有效管理突发紧急任务

在看板中有效管理突发紧急任务需要&#xff1a;设立专门的紧急任务通道、重新调整任务优先级、保持适度的WIP&#xff08;Work-in-Progress&#xff09;弹性、优化任务处理流程、提高团队应对突发情况的敏捷性。其中&#xff0c;设立专门的紧急任务通道尤为重要&#xff0c;这能…...

2021-03-15 iview一些问题

1.iview 在使用tree组件时&#xff0c;发现没有set类的方法&#xff0c;只有get&#xff0c;那么要改变tree值&#xff0c;只能遍历treeData&#xff0c;递归修改treeData的checked&#xff0c;发现无法更改&#xff0c;原因在于check模式下&#xff0c;子元素的勾选状态跟父节…...

【Web 进阶篇】优雅的接口设计:统一响应、全局异常处理与参数校验

系列回顾&#xff1a; 在上一篇中&#xff0c;我们成功地为应用集成了数据库&#xff0c;并使用 Spring Data JPA 实现了基本的 CRUD API。我们的应用现在能“记忆”数据了&#xff01;但是&#xff0c;如果你仔细审视那些 API&#xff0c;会发现它们还很“粗糙”&#xff1a;有…...

uniapp微信小程序视频实时流+pc端预览方案

方案类型技术实现是否免费优点缺点适用场景延迟范围开发复杂度​WebSocket图片帧​定时拍照Base64传输✅ 完全免费无需服务器 纯前端实现高延迟高流量 帧率极低个人demo测试 超低频监控500ms-2s⭐⭐​RTMP推流​TRTC/即构SDK推流❌ 付费方案 &#xff08;部分有免费额度&#x…...

工业自动化时代的精准装配革新:迁移科技3D视觉系统如何重塑机器人定位装配

AI3D视觉的工业赋能者 迁移科技成立于2017年&#xff0c;作为行业领先的3D工业相机及视觉系统供应商&#xff0c;累计完成数亿元融资。其核心技术覆盖硬件设计、算法优化及软件集成&#xff0c;通过稳定、易用、高回报的AI3D视觉系统&#xff0c;为汽车、新能源、金属制造等行…...