当前位置: 首页 > news >正文

椭圆曲线加法运算

1. 定义

椭圆曲线 (Elliptic Curve) 不是函数,而是一条平面曲线,其方程是定义如下:

y 2 = x 3 + a x + b y^2=x^3+ax+b y2=x3+ax+b

其中,判别式 Δ = − 16 ( 4 a 3 + 27 b 2 ) ≠ 0 \Delta =-16(4a^3+27b^2)\neq 0 Δ=16(4a3+27b2)=0。判别式表示该方程需要满足无奇点的约束条件。无奇点在几何上意味着曲线没有尖点,自相交点,或孤立点。

举例而言,当 ( a , b ) = ( 0 , 0 ) (a,b)=(0,0) (a,b)=(0,0)时, Δ = 0 \Delta=0 Δ=0意味着曲线存在奇点,不满足无奇点的约束条件,此时曲线 y 2 = x 3 y^2=x^3 y2=x3不是椭圆曲线。

[图片参考自:https://www.desmos.com/calculator/fttnxuzryp?lang=zh-TW]


2. 椭圆曲线加法运算

2.1. 问题描述

给定椭圆曲线 y 2 = x 3 + 8 y^2=x^3+8 y2=x3+8,点 P = ( 0 , 2 2 ) P=(0, 2\sqrt{2}) P=(0,22 ) Q = ( − 2 , 0 ) Q=(-2, 0) Q=(2,0),(注意,这里点P,Q是实数集上的例子,仅仅作示范使用,真实在有限域中,点P,Q的值均为整数),求椭圆曲线 y 2 = x 3 + 8 y^2=x^3+8 y2=x3+8中, P + Q P+Q P+Q的值?

2.2. 解决方案

请添加图片描述
步骤一:求直线PQ的方程式

直线PQ的斜率: y p − y q x p − x q = 2 2 − 0 0 − − 2 = 2 \frac{y_p-y_q}{x_p-x_q}=\frac{2\sqrt{2}-0}{0--2}=\sqrt{2} xpxqypyq=0−−222 0=2

代入Q点,得到直线PQ的方程式: y = 2 + 2 2 y=\sqrt{2}+2\sqrt{2} y=2 +22

步骤二:求直线PQ和椭圆曲线的第三个交点,取第三个交点的关于Y的对称点

并列直线PQ和椭圆曲线的方程 { y 2 = x 3 + 8 y = 2 x + 2 2 \begin{cases} y^2=x^3+8& \\ y=\sqrt{2}x+2\sqrt{2}& \end{cases} {y2=x3+8y=2 x+22

得到第三个交点 R ′ = ( 4 , 6 2 ) R'=(4,6\sqrt{2}) R=(4,62 )

取第三个交点的关于Y的对称点 R = ( 4 , − 6 2 ) R=(4,-6\sqrt{2}) R=(4,62 )

因此,椭圆曲线 y 2 = x 3 + 8 y^2=x^3+8 y2=x3+8中, P + Q = R = ( 4 , − 6 2 ) P+Q=R=(4,-6\sqrt{2}) P+Q=R=(4,62 )


参考资料

[1. 椭圆曲线] https://www.ruanx.net/elliptic-curve/
[2. 椭圆曲线判别式] https://zh.wikipedia.org/zh-hk/%E6%A4%AD%E5%9C%86%E6%9B%B2%E7%BA%BF

相关文章:

椭圆曲线加法运算

1. 定义 椭圆曲线 (Elliptic Curve) 不是函数,而是一条平面曲线,其方程是定义如下: y 2 x 3 a x b y^2x^3axb y2x3axb 其中,判别式 Δ − 16 ( 4 a 3 27 b 2 ) ≠ 0 \Delta -16(4a^327b^2)\neq 0 Δ−16(4a327b2)0。判别…...

(STM32笔记)九、RCC时钟树与时钟 第一部分

我用的是正点的STM32F103来进行学习,板子和教程是野火的指南者。 之后的这个系列笔记开头未标明的话,用的也是这个板子和教程。 九、RCC时钟树与时钟 九、RCC时钟树与时钟1、时钟树HSE时钟HSI时钟锁相环时钟系统时钟HCLK时钟PCLK1时钟PCLK2时钟RTC时钟独…...

fastjson-流程分析

参考视频:fasfjson反序列化漏洞1-流程分析 分析版本 fastjson1.2.24 JDK 8u65 分析过程 新建Person类 public class Person {private String name;private int age;public Person() {System.out.println("constructor_0");}public Person(String na…...

Linux 命令安装

系列文章目录 提示:仅用于个人学习,进行查漏补缺使用。 1.Linux介绍、目录结构、文件基本属性、Shell 2.Linux常用命令 3.Linux文件管理 4.Linux 命令安装 提示:写完文章后,目录可以自动生成,如何生成可参考右边的帮助…...

清华和字节联合推出的视频理解大模型video-SALMONN(ICML 2024)

video-SALMONN: Speech-Enhanced Audio-Visual Large Language Models 论文信息 paper:https://arxiv.org/abs/2406.15704 code:https://github.com/bytedance/SALMONN/ AI也会「刷抖音」!清华领衔发布短视频全模态理解新模型 | ICML 2024 …...

从数据爬取到可视化展示:Flask框架与ECharts深度解析

目录 🔹 Flask框架源码解析 Flask应用初始化路由与视图函数请求与响应中间件 🔹 ECharts可视化精讲 ECharts安装与配置基本图表类型图表样式与交互高级图表配置与数据动态更新实战:结合Flask与ECharts展示爬取数据 Flask框架源码解析 &…...

【jvm】类加载分几步

目录 1. 加载(Loading)2. 链接(Linking)2.1 验证(Verification)2.2 准备(Preparation)2.3 解析(Resolution) 3. 初始化(Initialization&#xff0…...

使用Apache http client发送json数据(demo)

POM依赖 &#xff1a; <dependency><groupId>org.apache.httpcomponents</groupId><artifactId>httpclient</artifactId><version>4.5.12</version></dependency><dependency><groupId>com.alibaba</groupId&g…...

读零信任网络:在不可信网络中构建安全系统07设备信任

1. 设备信任 1.1. 在零信任网络中建立设备信任至关重要&#xff0c;这也是非常困难的一个环节 1.2. 建立设备信任是基石&#xff0c;直接影响零信任网络架构的成败 1.3. 大多数网络安全事件都和攻击者获得信任设备的控制权相关&#xff0c;这种情况一旦发生&#xff0c;信任…...

【Java算法专场】前缀和(下)

目录 和为 K 的子数组 算法分析 算法步骤 算法代码 算法示例 和可被 K 整除的子数组 算法分析 同余定理 负数取余 算法步骤 算法代码 算法示例 连续数组 算法分析 算法步骤 算法代码 算法示例 矩阵区域和 算法分析 算法步骤 算法代码 算法示例 算法分析 …...

音视频相关文章总目录

为了方便各位观看&#xff0c;本文置顶&#xff0c;以目录形式汇集我写过的大部分音视频专题文章。之后文章更新&#xff0c;本目录也会同步更新。写得不好和零零散散的文章就不放在这里了&#x1f605; &#xff1a; 音视频入门基础&#xff1a;像素格式专题系列文章&#x…...

7月31日MySQL学习笔记

今日内容: mysql: 行列转换 数据类型 函数 触发器 存储过程 事务 索引(还没讲) 三范式 JDBC连接数据库的6个步骤 三握四挥 行列转换 第一步 新建要转换的列 select name, 1 as 语文, 1 as 数学, 1 as 英语 from t_score GROUP BY name 第二步 对每一列填入值…...

什么是容器查询?分享 1 段优质 CSS 代码片段!

本内容首发于工粽号&#xff1a;程序员大澈&#xff0c;每日分享一段优质代码片段&#xff0c;欢迎关注和投稿&#xff01; 大家好&#xff0c;我是大澈&#xff01; 本文约 700 字&#xff0c;整篇阅读约需 1 分钟。 今天分享一段优质 CSS 代码片段&#xff0c;使用容器查询…...

【linux深入剖析】初识线程---线程概念

&#x1f341;你好&#xff0c;我是 RO-BERRY &#x1f4d7; 致力于C、C、数据结构、TCP/IP、数据库等等一系列知识 &#x1f384;感谢你的陪伴与支持 &#xff0c;故事既有了开头&#xff0c;就要画上一个完美的句号&#xff0c;让我们一起加油 目录 1. Linux线程概念什么是线…...

【MySQL】索引——索引的引入、认识磁盘、磁盘的组成、扇区、磁盘访问、磁盘和MySQL交互、索引的概念

文章目录 MySQL1. 索引的引入2. 认识磁盘2.1 磁盘的组成2.2 扇区2.3 磁盘访问 3. 磁盘和MySQL交互4. 索引的概念4.1 索引测试4.2 Page4.3 单页和多页情况 MySQL 1. 索引的引入 海量表在进行普通查询的时候&#xff0c;效率会非常的慢&#xff0c;但是索引可以解决这个问题。 -…...

python部署flask项目

python部署flask项目 1. 准备服务器2. 设置服务器环境3. 创建虚拟环境并安装项目依赖4. 配置Gunicorn5. 配置Nginx6. 设置Supervisor&#xff08;可选&#xff09;7. 测试部署 将Flask项目部署到服务器的流程大致如下&#xff1a; 1. 准备服务器 首先&#xff0c;需要准备一台…...

数据建模标准-基于事实建模

前情提要 数据模型定义 DAMA数据治理体系中将数据模型定义为一种文档形式&#xff0c;数据模型是用来将数据需求从业务传递到IT,以及在IT内部从分析师、建模师和架构师到数据库设计人员和开发人员的主要媒介&#xff1b; 作用 记录数据需求和建模过程中产生的数据定义&…...

量产部落SM2258XT开卡软件,SM2258XT主控128G SSD固态卡死修复

故障现象&#xff1a;连接此固态硬盘后电脑就会卡死&#xff0c;拔掉重新连接概率性显示盘符&#xff0c;显示了之后也不能正常操作&#xff0c;一点击打开&#xff0c;电脑就立马卡死。 解决过程&#xff1a;下载了很多款量产工具&#xff0c;都不能开卡成功&#xff0c;点击…...

《零散知识点 · 自定义 HandleMapping》

&#x1f4e2; 大家好&#xff0c;我是 【战神刘玉栋】&#xff0c;有10多年的研发经验&#xff0c;致力于前后端技术栈的知识沉淀和传播。 &#x1f497; &#x1f33b; CSDN入驻不久&#xff0c;希望大家多多支持&#xff0c;后续会继续提升文章质量&#xff0c;绝不滥竽充数…...

谈谈我对微服务的理解2.0

文章目录 一、引出问题二、微服务2-1、微服务的技术2-2、微服务的目的 三、微服务的拆分四、不连表查询五、微服务的好处六、微服务的坏处七、应付当下 这篇文章原本叫《如何做到不连表查询》&#xff0c;因为我对这个事一直耿耿于怀。在上家公司我经常被连表折磨&#xff08;连…...

synchronized 学习

学习源&#xff1a; https://www.bilibili.com/video/BV1aJ411V763?spm_id_from333.788.videopod.episodes&vd_source32e1c41a9370911ab06d12fbc36c4ebc 1.应用场景 不超卖&#xff0c;也要考虑性能问题&#xff08;场景&#xff09; 2.常见面试问题&#xff1a; sync出…...

React第五十七节 Router中RouterProvider使用详解及注意事项

前言 在 React Router v6.4 中&#xff0c;RouterProvider 是一个核心组件&#xff0c;用于提供基于数据路由&#xff08;data routers&#xff09;的新型路由方案。 它替代了传统的 <BrowserRouter>&#xff0c;支持更强大的数据加载和操作功能&#xff08;如 loader 和…...

DockerHub与私有镜像仓库在容器化中的应用与管理

哈喽&#xff0c;大家好&#xff0c;我是左手python&#xff01; Docker Hub的应用与管理 Docker Hub的基本概念与使用方法 Docker Hub是Docker官方提供的一个公共镜像仓库&#xff0c;用户可以在其中找到各种操作系统、软件和应用的镜像。开发者可以通过Docker Hub轻松获取所…...

使用分级同态加密防御梯度泄漏

抽象 联邦学习 &#xff08;FL&#xff09; 支持跨分布式客户端进行协作模型训练&#xff0c;而无需共享原始数据&#xff0c;这使其成为在互联和自动驾驶汽车 &#xff08;CAV&#xff09; 等领域保护隐私的机器学习的一种很有前途的方法。然而&#xff0c;最近的研究表明&…...

django filter 统计数量 按属性去重

在Django中&#xff0c;如果你想要根据某个属性对查询集进行去重并统计数量&#xff0c;你可以使用values()方法配合annotate()方法来实现。这里有两种常见的方法来完成这个需求&#xff1a; 方法1&#xff1a;使用annotate()和Count 假设你有一个模型Item&#xff0c;并且你想…...

STM32标准库-DMA直接存储器存取

文章目录 一、DMA1.1简介1.2存储器映像1.3DMA框图1.4DMA基本结构1.5DMA请求1.6数据宽度与对齐1.7数据转运DMA1.8ADC扫描模式DMA 二、数据转运DMA2.1接线图2.2代码2.3相关API 一、DMA 1.1简介 DMA&#xff08;Direct Memory Access&#xff09;直接存储器存取 DMA可以提供外设…...

在 Nginx Stream 层“改写”MQTT ngx_stream_mqtt_filter_module

1、为什么要修改 CONNECT 报文&#xff1f; 多租户隔离&#xff1a;自动为接入设备追加租户前缀&#xff0c;后端按 ClientID 拆分队列。零代码鉴权&#xff1a;将入站用户名替换为 OAuth Access-Token&#xff0c;后端 Broker 统一校验。灰度发布&#xff1a;根据 IP/地理位写…...

srs linux

下载编译运行 git clone https:///ossrs/srs.git ./configure --h265on make 编译完成后即可启动SRS # 启动 ./objs/srs -c conf/srs.conf # 查看日志 tail -n 30 -f ./objs/srs.log 开放端口 默认RTMP接收推流端口是1935&#xff0c;SRS管理页面端口是8080&#xff0c;可…...

苍穹外卖--缓存菜品

1.问题说明 用户端小程序展示的菜品数据都是通过查询数据库获得&#xff0c;如果用户端访问量比较大&#xff0c;数据库访问压力随之增大 2.实现思路 通过Redis来缓存菜品数据&#xff0c;减少数据库查询操作。 缓存逻辑分析&#xff1a; ①每个分类下的菜品保持一份缓存数据…...

Python如何给视频添加音频和字幕

在Python中&#xff0c;给视频添加音频和字幕可以使用电影文件处理库MoviePy和字幕处理库Subtitles。下面将详细介绍如何使用这些库来实现视频的音频和字幕添加&#xff0c;包括必要的代码示例和详细解释。 环境准备 在开始之前&#xff0c;需要安装以下Python库&#xff1a;…...