当前位置: 首页 > news >正文

椭圆曲线加法运算

1. 定义

椭圆曲线 (Elliptic Curve) 不是函数,而是一条平面曲线,其方程是定义如下:

y 2 = x 3 + a x + b y^2=x^3+ax+b y2=x3+ax+b

其中,判别式 Δ = − 16 ( 4 a 3 + 27 b 2 ) ≠ 0 \Delta =-16(4a^3+27b^2)\neq 0 Δ=16(4a3+27b2)=0。判别式表示该方程需要满足无奇点的约束条件。无奇点在几何上意味着曲线没有尖点,自相交点,或孤立点。

举例而言,当 ( a , b ) = ( 0 , 0 ) (a,b)=(0,0) (a,b)=(0,0)时, Δ = 0 \Delta=0 Δ=0意味着曲线存在奇点,不满足无奇点的约束条件,此时曲线 y 2 = x 3 y^2=x^3 y2=x3不是椭圆曲线。

[图片参考自:https://www.desmos.com/calculator/fttnxuzryp?lang=zh-TW]


2. 椭圆曲线加法运算

2.1. 问题描述

给定椭圆曲线 y 2 = x 3 + 8 y^2=x^3+8 y2=x3+8,点 P = ( 0 , 2 2 ) P=(0, 2\sqrt{2}) P=(0,22 ) Q = ( − 2 , 0 ) Q=(-2, 0) Q=(2,0),(注意,这里点P,Q是实数集上的例子,仅仅作示范使用,真实在有限域中,点P,Q的值均为整数),求椭圆曲线 y 2 = x 3 + 8 y^2=x^3+8 y2=x3+8中, P + Q P+Q P+Q的值?

2.2. 解决方案

请添加图片描述
步骤一:求直线PQ的方程式

直线PQ的斜率: y p − y q x p − x q = 2 2 − 0 0 − − 2 = 2 \frac{y_p-y_q}{x_p-x_q}=\frac{2\sqrt{2}-0}{0--2}=\sqrt{2} xpxqypyq=0−−222 0=2

代入Q点,得到直线PQ的方程式: y = 2 + 2 2 y=\sqrt{2}+2\sqrt{2} y=2 +22

步骤二:求直线PQ和椭圆曲线的第三个交点,取第三个交点的关于Y的对称点

并列直线PQ和椭圆曲线的方程 { y 2 = x 3 + 8 y = 2 x + 2 2 \begin{cases} y^2=x^3+8& \\ y=\sqrt{2}x+2\sqrt{2}& \end{cases} {y2=x3+8y=2 x+22

得到第三个交点 R ′ = ( 4 , 6 2 ) R'=(4,6\sqrt{2}) R=(4,62 )

取第三个交点的关于Y的对称点 R = ( 4 , − 6 2 ) R=(4,-6\sqrt{2}) R=(4,62 )

因此,椭圆曲线 y 2 = x 3 + 8 y^2=x^3+8 y2=x3+8中, P + Q = R = ( 4 , − 6 2 ) P+Q=R=(4,-6\sqrt{2}) P+Q=R=(4,62 )


参考资料

[1. 椭圆曲线] https://www.ruanx.net/elliptic-curve/
[2. 椭圆曲线判别式] https://zh.wikipedia.org/zh-hk/%E6%A4%AD%E5%9C%86%E6%9B%B2%E7%BA%BF

相关文章:

椭圆曲线加法运算

1. 定义 椭圆曲线 (Elliptic Curve) 不是函数,而是一条平面曲线,其方程是定义如下: y 2 x 3 a x b y^2x^3axb y2x3axb 其中,判别式 Δ − 16 ( 4 a 3 27 b 2 ) ≠ 0 \Delta -16(4a^327b^2)\neq 0 Δ−16(4a327b2)0。判别…...

(STM32笔记)九、RCC时钟树与时钟 第一部分

我用的是正点的STM32F103来进行学习,板子和教程是野火的指南者。 之后的这个系列笔记开头未标明的话,用的也是这个板子和教程。 九、RCC时钟树与时钟 九、RCC时钟树与时钟1、时钟树HSE时钟HSI时钟锁相环时钟系统时钟HCLK时钟PCLK1时钟PCLK2时钟RTC时钟独…...

fastjson-流程分析

参考视频:fasfjson反序列化漏洞1-流程分析 分析版本 fastjson1.2.24 JDK 8u65 分析过程 新建Person类 public class Person {private String name;private int age;public Person() {System.out.println("constructor_0");}public Person(String na…...

Linux 命令安装

系列文章目录 提示:仅用于个人学习,进行查漏补缺使用。 1.Linux介绍、目录结构、文件基本属性、Shell 2.Linux常用命令 3.Linux文件管理 4.Linux 命令安装 提示:写完文章后,目录可以自动生成,如何生成可参考右边的帮助…...

清华和字节联合推出的视频理解大模型video-SALMONN(ICML 2024)

video-SALMONN: Speech-Enhanced Audio-Visual Large Language Models 论文信息 paper:https://arxiv.org/abs/2406.15704 code:https://github.com/bytedance/SALMONN/ AI也会「刷抖音」!清华领衔发布短视频全模态理解新模型 | ICML 2024 …...

从数据爬取到可视化展示:Flask框架与ECharts深度解析

目录 🔹 Flask框架源码解析 Flask应用初始化路由与视图函数请求与响应中间件 🔹 ECharts可视化精讲 ECharts安装与配置基本图表类型图表样式与交互高级图表配置与数据动态更新实战:结合Flask与ECharts展示爬取数据 Flask框架源码解析 &…...

【jvm】类加载分几步

目录 1. 加载(Loading)2. 链接(Linking)2.1 验证(Verification)2.2 准备(Preparation)2.3 解析(Resolution) 3. 初始化(Initialization&#xff0…...

使用Apache http client发送json数据(demo)

POM依赖 &#xff1a; <dependency><groupId>org.apache.httpcomponents</groupId><artifactId>httpclient</artifactId><version>4.5.12</version></dependency><dependency><groupId>com.alibaba</groupId&g…...

读零信任网络:在不可信网络中构建安全系统07设备信任

1. 设备信任 1.1. 在零信任网络中建立设备信任至关重要&#xff0c;这也是非常困难的一个环节 1.2. 建立设备信任是基石&#xff0c;直接影响零信任网络架构的成败 1.3. 大多数网络安全事件都和攻击者获得信任设备的控制权相关&#xff0c;这种情况一旦发生&#xff0c;信任…...

【Java算法专场】前缀和(下)

目录 和为 K 的子数组 算法分析 算法步骤 算法代码 算法示例 和可被 K 整除的子数组 算法分析 同余定理 负数取余 算法步骤 算法代码 算法示例 连续数组 算法分析 算法步骤 算法代码 算法示例 矩阵区域和 算法分析 算法步骤 算法代码 算法示例 算法分析 …...

音视频相关文章总目录

为了方便各位观看&#xff0c;本文置顶&#xff0c;以目录形式汇集我写过的大部分音视频专题文章。之后文章更新&#xff0c;本目录也会同步更新。写得不好和零零散散的文章就不放在这里了&#x1f605; &#xff1a; 音视频入门基础&#xff1a;像素格式专题系列文章&#x…...

7月31日MySQL学习笔记

今日内容: mysql: 行列转换 数据类型 函数 触发器 存储过程 事务 索引(还没讲) 三范式 JDBC连接数据库的6个步骤 三握四挥 行列转换 第一步 新建要转换的列 select name, 1 as 语文, 1 as 数学, 1 as 英语 from t_score GROUP BY name 第二步 对每一列填入值…...

什么是容器查询?分享 1 段优质 CSS 代码片段!

本内容首发于工粽号&#xff1a;程序员大澈&#xff0c;每日分享一段优质代码片段&#xff0c;欢迎关注和投稿&#xff01; 大家好&#xff0c;我是大澈&#xff01; 本文约 700 字&#xff0c;整篇阅读约需 1 分钟。 今天分享一段优质 CSS 代码片段&#xff0c;使用容器查询…...

【linux深入剖析】初识线程---线程概念

&#x1f341;你好&#xff0c;我是 RO-BERRY &#x1f4d7; 致力于C、C、数据结构、TCP/IP、数据库等等一系列知识 &#x1f384;感谢你的陪伴与支持 &#xff0c;故事既有了开头&#xff0c;就要画上一个完美的句号&#xff0c;让我们一起加油 目录 1. Linux线程概念什么是线…...

【MySQL】索引——索引的引入、认识磁盘、磁盘的组成、扇区、磁盘访问、磁盘和MySQL交互、索引的概念

文章目录 MySQL1. 索引的引入2. 认识磁盘2.1 磁盘的组成2.2 扇区2.3 磁盘访问 3. 磁盘和MySQL交互4. 索引的概念4.1 索引测试4.2 Page4.3 单页和多页情况 MySQL 1. 索引的引入 海量表在进行普通查询的时候&#xff0c;效率会非常的慢&#xff0c;但是索引可以解决这个问题。 -…...

python部署flask项目

python部署flask项目 1. 准备服务器2. 设置服务器环境3. 创建虚拟环境并安装项目依赖4. 配置Gunicorn5. 配置Nginx6. 设置Supervisor&#xff08;可选&#xff09;7. 测试部署 将Flask项目部署到服务器的流程大致如下&#xff1a; 1. 准备服务器 首先&#xff0c;需要准备一台…...

数据建模标准-基于事实建模

前情提要 数据模型定义 DAMA数据治理体系中将数据模型定义为一种文档形式&#xff0c;数据模型是用来将数据需求从业务传递到IT,以及在IT内部从分析师、建模师和架构师到数据库设计人员和开发人员的主要媒介&#xff1b; 作用 记录数据需求和建模过程中产生的数据定义&…...

量产部落SM2258XT开卡软件,SM2258XT主控128G SSD固态卡死修复

故障现象&#xff1a;连接此固态硬盘后电脑就会卡死&#xff0c;拔掉重新连接概率性显示盘符&#xff0c;显示了之后也不能正常操作&#xff0c;一点击打开&#xff0c;电脑就立马卡死。 解决过程&#xff1a;下载了很多款量产工具&#xff0c;都不能开卡成功&#xff0c;点击…...

《零散知识点 · 自定义 HandleMapping》

&#x1f4e2; 大家好&#xff0c;我是 【战神刘玉栋】&#xff0c;有10多年的研发经验&#xff0c;致力于前后端技术栈的知识沉淀和传播。 &#x1f497; &#x1f33b; CSDN入驻不久&#xff0c;希望大家多多支持&#xff0c;后续会继续提升文章质量&#xff0c;绝不滥竽充数…...

谈谈我对微服务的理解2.0

文章目录 一、引出问题二、微服务2-1、微服务的技术2-2、微服务的目的 三、微服务的拆分四、不连表查询五、微服务的好处六、微服务的坏处七、应付当下 这篇文章原本叫《如何做到不连表查询》&#xff0c;因为我对这个事一直耿耿于怀。在上家公司我经常被连表折磨&#xff08;连…...

rknn优化教程(二)

文章目录 1. 前述2. 三方库的封装2.1 xrepo中的库2.2 xrepo之外的库2.2.1 opencv2.2.2 rknnrt2.2.3 spdlog 3. rknn_engine库 1. 前述 OK&#xff0c;开始写第二篇的内容了。这篇博客主要能写一下&#xff1a; 如何给一些三方库按照xmake方式进行封装&#xff0c;供调用如何按…...

[ICLR 2022]How Much Can CLIP Benefit Vision-and-Language Tasks?

论文网址&#xff1a;pdf 英文是纯手打的&#xff01;论文原文的summarizing and paraphrasing。可能会出现难以避免的拼写错误和语法错误&#xff0c;若有发现欢迎评论指正&#xff01;文章偏向于笔记&#xff0c;谨慎食用 目录 1. 心得 2. 论文逐段精读 2.1. Abstract 2…...

数据链路层的主要功能是什么

数据链路层&#xff08;OSI模型第2层&#xff09;的核心功能是在相邻网络节点&#xff08;如交换机、主机&#xff09;间提供可靠的数据帧传输服务&#xff0c;主要职责包括&#xff1a; &#x1f511; 核心功能详解&#xff1a; 帧封装与解封装 封装&#xff1a; 将网络层下发…...

工业自动化时代的精准装配革新:迁移科技3D视觉系统如何重塑机器人定位装配

AI3D视觉的工业赋能者 迁移科技成立于2017年&#xff0c;作为行业领先的3D工业相机及视觉系统供应商&#xff0c;累计完成数亿元融资。其核心技术覆盖硬件设计、算法优化及软件集成&#xff0c;通过稳定、易用、高回报的AI3D视觉系统&#xff0c;为汽车、新能源、金属制造等行…...

c#开发AI模型对话

AI模型 前面已经介绍了一般AI模型本地部署&#xff0c;直接调用现成的模型数据。这里主要讲述讲接口集成到我们自己的程序中使用方式。 微软提供了ML.NET来开发和使用AI模型&#xff0c;但是目前国内可能使用不多&#xff0c;至少实践例子很少看见。开发训练模型就不介绍了&am…...

k8s业务程序联调工具-KtConnect

概述 原理 工具作用是建立了一个从本地到集群的单向VPN&#xff0c;根据VPN原理&#xff0c;打通两个内网必然需要借助一个公共中继节点&#xff0c;ktconnect工具巧妙的利用k8s原生的portforward能力&#xff0c;简化了建立连接的过程&#xff0c;apiserver间接起到了中继节…...

CMake控制VS2022项目文件分组

我们可以通过 CMake 控制源文件的组织结构,使它们在 VS 解决方案资源管理器中以“组”(Filter)的形式进行分类展示。 🎯 目标 通过 CMake 脚本将 .cpp、.h 等源文件分组显示在 Visual Studio 2022 的解决方案资源管理器中。 ✅ 支持的方法汇总(共4种) 方法描述是否推荐…...

uniapp手机号一键登录保姆级教程(包含前端和后端)

目录 前置条件创建uniapp项目并关联uniClound云空间开启一键登录模块并开通一键登录服务编写云函数并上传部署获取手机号流程(第一种) 前端直接调用云函数获取手机号&#xff08;第三种&#xff09;后台调用云函数获取手机号 错误码常见问题 前置条件 手机安装有sim卡手机开启…...

R 语言科研绘图第 55 期 --- 网络图-聚类

在发表科研论文的过程中&#xff0c;科研绘图是必不可少的&#xff0c;一张好看的图形会是文章很大的加分项。 为了便于使用&#xff0c;本系列文章介绍的所有绘图都已收录到了 sciRplot 项目中&#xff0c;获取方式&#xff1a; R 语言科研绘图模板 --- sciRplothttps://mp.…...

c++第七天 继承与派生2

这一篇文章主要内容是 派生类构造函数与析构函数 在派生类中重写基类成员 以及多继承 第一部分&#xff1a;派生类构造函数与析构函数 当创建一个派生类对象时&#xff0c;基类成员是如何初始化的&#xff1f; 1.当派生类对象创建的时候&#xff0c;基类成员的初始化顺序 …...