当前位置: 首页 > news >正文

深度学习 —— 个人学习笔记20(转置卷积、全卷积网络)

声明

  本文章为个人学习使用,版面观感若有不适请谅解,文中知识仅代表个人观点,若出现错误,欢迎各位批评指正。

三十九、转置卷积

import torch
from torch import nndef trans_conv(X, K):h, w = K.shapeY = torch.zeros((X.shape[0] + h - 1, X.shape[1] + w - 1))for i in range(X.shape[0]):for j in range(X.shape[1]):Y[i: i + h, j: j + w] += X[i, j] * Kreturn YX = torch.tensor([[0.0, 1.0], [2.0, 3.0]])
K = torch.tensor([[0.0, 1.0], [2.0, 3.0]])
print(f'基本的二维转置卷积运算 : {trans_conv(X, K)}')X, K = X.reshape(1, 1, 2, 2), K.reshape(1, 1, 2, 2)
tconv = nn.ConvTranspose2d(1, 1, kernel_size=2, bias=False)
tconv.weight.data = K
print(f'输入输出都是四维张量时 : {tconv(X)}')# 在转置卷积中,填充被应用于输出(常规卷积将填充应用于输入)。
# 当将高和宽两侧的填充数指定为 1 时,转置卷积的输出中将删除第一和最后的行与列。
tconv = nn.ConvTranspose2d(1, 1, kernel_size=2, padding=1, bias=False)
tconv.weight.data = K
print(f'padding=1 时 : {tconv(X)}')# 在转置卷积中,步幅被指定为中间结果(输出),而不是输入。
tconv = nn.ConvTranspose2d(1, 1, kernel_size=2, stride=2, bias=False)
tconv.weight.data = K
print(f'stride=2 时 : {tconv(X)}')X = torch.rand(size=(1, 10, 16, 16))
conv = nn.Conv2d(10, 20, kernel_size=5, padding=2, stride=3)
tconv = nn.ConvTranspose2d(20, 10, kernel_size=5, padding=2, stride=3)
print(f'先代入卷积,再代入转置卷积形状不变 : {tconv(conv(X)).shape == X.shape}')def corr2d(X, K):reduce_sum = lambda x, *args, **kwargs: x.sum(*args, **kwargs)h, w = K.shapeY = torch.zeros((X.shape[0] - h + 1, X.shape[1] - w + 1))for i in range(Y.shape[0]):for j in range(Y.shape[1]):Y[i, j] = reduce_sum((X[i: i + h, j: j + w] * K))return YX = torch.arange(9.0).reshape(3, 3)
K = torch.tensor([[1.0, 2.0], [3.0, 4.0]])
Y = corr2d(X, K)
print(f'二维卷积运算 : {Y}')def kernel2matrix(K):k, W = torch.zeros(5), torch.zeros((4, 9))k[:2], k[3:5] = K[0, :], K[1, :]W[0, :5], W[1, 1:6], W[2, 3:8], W[3, 4:] = k, k, k, kreturn WW = kernel2matrix(K)
print(f'稀疏权重矩阵 : {W}')print(f'使用矩阵乘法实现卷积 : {Y == torch.matmul(W, X.reshape(-1)).reshape(2, 2)}')Z = trans_conv(Y, K)
print(f'使用矩阵乘法实现转置卷积 : {Z == torch.matmul(W.T, Y.reshape(-1)).reshape(3, 3)}')

四十、全卷积网络( FCN )

import os
import torch
import time
import torchvision
from PIL import Image
from IPython import display
from torch import nn
import matplotlib.pyplot as plt
from torch.nn import functional as F
from matplotlib_inline import backend_inlinedef accuracy(y_hat, y):                                                           # 定义一个函数来为预测正确的数量计数"""计算预测正确的数量"""if len(y_hat.shape) > 1 and y_hat.shape[1] > 1:y_hat = y_hat.argmax(axis=1)cmp = y_hat.type(y.dtype) == y                                                # bool 类型,若预测结果与实际结果一致,则为 Truereturn float(cmp.type(y.dtype).sum())def evaluate_accuracy_gpu(net, data_iter, device=None):"""使用GPU计算模型在数据集上的精度"""if isinstance(net, nn.Module):net.eval()  # 设置为评估模式if not device:device = next(iter(net.parameters())).device# 正确预测的数量,总预测的数量metric = Accumulator(2)with torch.no_grad():for X, y in data_iter:if isinstance(X, list):# BERT微调所需的(之后将介绍)X = [x.to(device) for x in X]else:X = X.to(device)y = y.to(device)metric.add(accuracy(net(X), y), y.numel())return metric[0] / metric[1]def set_axes(axes, xlabel, ylabel, xlim, ylim, xscale, yscale, legend):axes.set_xlabel(xlabel), axes.set_ylabel(ylabel)axes.set_xscale(xscale), axes.set_yscale(yscale)axes.set_xlim(xlim),     axes.set_ylim(ylim)if legend:axes.legend(legend)axes.grid()class Accumulator:                                                                # 定义一个实用程序类 Accumulator,用于对多个变量进行累加"""在n个变量上累加"""def __init__(self, n):self.data = [0.0] * ndef add(self, *args):self.data = [a + float(b) for a, b in zip(self.data, args)]def reset(self):self.data = [0.0] * len(self.data)def __getitem__(self, idx):return self.data[idx]class Animator:                                                                   # 定义一个在动画中绘制数据的实用程序类 Animator"""在动画中绘制数据"""def __init__(self, xlabel=None, ylabel=None, legend=None, xlim=None,ylim=None, xscale='linear', yscale='linear',fmts=('-', 'm--', 'g-.', 'r:'), nrows=1, ncols=1,figsize=(3.5, 2.5)):# 增量地绘制多条线if legend is None:legend = []backend_inline.set_matplotlib_formats('svg')self.fig, self.axes = plt.subplots(nrows, ncols, figsize=figsize)if nrows * ncols == 1:self.axes = [self.axes, ]# 使用lambda函数捕获参数self.config_axes = lambda: set_axes(self.axes[0], xlabel, ylabel, xlim, ylim, xscale, yscale, legend)self.X, self.Y, self.fmts = None, None, fmtsdef add(self, x, y):# Add multiple data points into the figureif not hasattr(y, "__len__"):y = [y]n = len(y)if not hasattr(x, "__len__"):x = [x] * nif not self.X:self.X = [[] for _ in range(n)]if not self.Y:self.Y = [[] for _ in range(n)]for i, (a, b) in enumerate(zip(x, y)):if a is not None and b is not None:self.X[i].append(a)self.Y[i].append(b)self.axes[0].cla()for x, y, fmt in zip(self.X, self.Y, self.fmts):self.axes[0].plot(x, y, fmt)self.config_axes()display.display(self.fig)# 通过以下两行代码实现了在PyCharm中显示动图# plt.draw()# plt.pause(interval=0.001)display.clear_output(wait=True)plt.rcParams['font.sans-serif'] = ['Microsoft YaHei']class Timer:def __init__(self):self.times = []self.start()def start(self):self.tik = time.time()def stop(self):self.times.append(time.time() - self.tik)return self.times[-1]def sum(self):"""Return the sum of time."""return sum(self.times)def read_voc_images(voc_dir, is_train=True):txt_fname = os.path.join(voc_dir, 'ImageSets', 'Segmentation','train.txt' if is_train else 'val.txt')mode = torchvision.io.image.ImageReadMode.RGBwith open(txt_fname, 'r') as f:images = f.read().split()features, labels = [], []for i, fname in enumerate(images):features.append(torchvision.io.read_image(os.path.join(voc_dir, 'JPEGImages', f'{fname}.jpg')))labels.append(torchvision.io.read_image(os.path.join(voc_dir, 'SegmentationClass' ,f'{fname}.png'), mode))return features, labelsVOC_COLORMAP = [[0, 0, 0], [128, 0, 0], [0, 128, 0], [128, 128, 0],[0, 0, 128], [128, 0, 128], [0, 128, 128], [128, 128, 128],[64, 0, 0], [192, 0, 0], [64, 128, 0], [192, 128, 0],[64, 0, 128], [192, 0, 128], [64, 128, 128], [192, 128, 128],[0, 64, 0], [128, 64, 0], [0, 192, 0], [128, 192, 0],[0, 64, 128]]def voc_colormap2label():colormap2label = torch.zeros(256 ** 3, dtype=torch.long)for i, colormap in enumerate(VOC_COLORMAP):colormap2label[(colormap[0] * 256 + colormap[1]) * 256 + colormap[2]] = ireturn colormap2labeldef voc_rand_crop(feature, label, height, width):rect = torchvision.transforms.RandomCrop.get_params(feature, (height, width))feature = torchvision.transforms.functional.crop(feature, *rect)label = torchvision.transforms.functional.crop(label, *rect)return feature, labeldef voc_label_indices(colormap, colormap2label):colormap = colormap.permute(1, 2, 0).numpy().astype('int32')idx = ((colormap[:, :, 0] * 256 + colormap[:, :, 1]) * 256+ colormap[:, :, 2])return colormap2label[idx]class VOCSegDataset(torch.utils.data.Dataset):def __init__(self, is_train, crop_size, voc_dir):self.transform = torchvision.transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])self.crop_size = crop_sizefeatures, labels = read_voc_images(voc_dir, is_train=is_train)self.features = [self.normalize_image(feature)for feature in self.filter(features)]self.labels = self.filter(labels)self.colormap2label = voc_colormap2label()if is_train:print('train : read ' + str(len(self.features)) + ' examples')else:print('validation : read ' + str(len(self.features)) + ' examples')def normalize_image(self, img):return self.transform(img.float() / 255)def filter(self, imgs):return [img for img in imgs if (img.shape[1] >= self.crop_size[0] andimg.shape[2] >= self.crop_size[1])]def __getitem__(self, idx):feature, label = voc_rand_crop(self.features[idx], self.labels[idx],*self.crop_size)return (feature, voc_label_indices(label, self.colormap2label))def __len__(self):return len(self.features)def set_figsize(figsize=(8.5, 6.5)):backend_inline.set_matplotlib_formats('svg')plt.rcParams['figure.figsize'] = figsizeplt.rcParams['font.sans-serif'] = ['Microsoft YaHei']def try_all_gpus():return [torch.device(f'cuda:{i}') for i in range(torch.cuda.device_count())]def load_data_voc(batch_size, crop_size):voc_dir = 'E:\\dayLily'train_iter = torch.utils.data.DataLoader(VOCSegDataset(True, crop_size, voc_dir), batch_size,shuffle=True, drop_last=True)test_iter = torch.utils.data.DataLoader(VOCSegDataset(False, crop_size, voc_dir), batch_size,drop_last=True)return train_iter, test_iterdef show_images(imgs, num_rows, num_cols, suptitle=None, titles=None, scale=1.5):numpy = lambda x, *args, **kwargs: x.detach().numpy(*args, **kwargs)figsize = (num_cols * scale, num_rows * scale)_, axes = plt.subplots(num_rows, num_cols, figsize=figsize)axes = axes.flatten()for i, (ax, img) in enumerate(zip(axes, imgs)):try:img = numpy(img)except:passax.imshow(img)ax.axes.get_xaxis().set_visible(False)ax.axes.get_yaxis().set_visible(False)if titles:ax.set_title(titles[i])elif suptitle:plt.suptitle(suptitle)plt.show()return axespretrained_net = torchvision.models.resnet18(pretrained=True)
print(list(pretrained_net.children())[-3:])net = nn.Sequential(*list(pretrained_net.children())[:-2])X = torch.rand(size=(1, 3, 320, 480))
print(f'net 的前向传播将输入的高和宽减小至原来的 1/32 : {net(X).shape}')num_classes = 21
net.add_module('final_conv', nn.Conv2d(512, num_classes, kernel_size=1))
net.add_module('transpose_conv', nn.ConvTranspose2d(num_classes, num_classes,kernel_size=64, padding=16, stride=32))def bilinear_kernel(in_channels, out_channels, kernel_size):factor = (kernel_size + 1) // 2if kernel_size % 2 == 1:center = factor - 1else:center = factor - 0.5og = (torch.arange(kernel_size).reshape(-1, 1),torch.arange(kernel_size).reshape(1, -1))filt = (1 - torch.abs(og[0] - center) / factor) * \(1 - torch.abs(og[1] - center) / factor)weight = torch.zeros((in_channels, out_channels,kernel_size, kernel_size))weight[range(in_channels), range(out_channels), :, :] = filtreturn weightconv_trans = nn.ConvTranspose2d(3, 3, kernel_size=4, padding=1, stride=2,bias=False)
conv_trans.weight.data.copy_(bilinear_kernel(3, 3, 4))img = torchvision.transforms.ToTensor()(Image.open('E:\\dayLily\\JPEGImages\\2024_959.jpg'))
X = img.unsqueeze(0)
Y = conv_trans(X)
out_img = Y[0].permute(1, 2, 0).detach()set_figsize()
print('input image shape:', img.permute(1, 2, 0).shape)
plt.imshow(img.permute(1, 2, 0))
print('output image shape:', out_img.shape)
plt.imshow(out_img)
plt.title('转置卷积层将图像的高和宽分别放大了 2 倍')
plt.show()W = bilinear_kernel(num_classes, num_classes, 64)
net.transpose_conv.weight.data.copy_(W)batch_size, crop_size = 32, (320, 480)
train_iter, test_iter = load_data_voc(batch_size, crop_size)def loss(inputs, targets):return F.cross_entropy(inputs, targets, reduction='none').mean(1).mean(1)def train_batch(net, X, y, loss, trainer, devices):if isinstance(X, list):X = [x.to(devices[0]) for x in X]else:X = X.to(devices[0])y = y.to(devices[0])net.train()trainer.zero_grad()pred = net(X)l = loss(pred, y)l.sum().backward()trainer.step()train_loss_sum = l.sum()train_acc_sum = accuracy(pred, y)return train_loss_sum, train_acc_sumdef train(net, train_iter, test_iter, loss, trainer, num_epochs,devices=try_all_gpus()):timer, num_batches = Timer(), len(train_iter)animator = Animator(xlabel='epoch', xlim=[1, num_epochs], ylim=[0, 1],legend=['train loss', 'train acc', 'test acc'])net = nn.DataParallel(net, device_ids=devices).to(devices[0])for epoch in range(num_epochs):# Sum of training loss, sum of training accuracy, no. of examples,# no. of predictionsmetric = Accumulator(4)for i, (features, labels) in enumerate(train_iter):timer.start()l, acc = train_batch(net, features, labels, loss, trainer, devices)metric.add(l, acc, labels.shape[0], labels.numel())timer.stop()if (i + 1) % (num_batches // 5) == 0 or i == num_batches - 1:animator.add(epoch + (i + 1) / num_batches,(metric[0] / metric[2], metric[1] / metric[3],None))test_acc = evaluate_accuracy_gpu(net, test_iter)animator.add(epoch + 1, (None, None, test_acc))plt.title(f'loss {metric[0] / metric[2]:.3f}, train acc 'f'{metric[1] / metric[3]:.3f}, test acc {test_acc:.3f}\n'f'{metric[2] * num_epochs / timer.sum():.1f} examples/sec on 'f'{str(torch.cuda.get_device_name())}')plt.show()num_epochs, lr, wd, devices = 5, 0.001, 1e-3, try_all_gpus()
trainer = torch.optim.SGD(net.parameters(), lr=lr, weight_decay=wd)
train(net, train_iter, test_iter, loss, trainer, num_epochs, devices)##### 预测 #####
def predict(img):X = test_iter.dataset.normalize_image(img).unsqueeze(0)pred = net(X.to(devices[0])).argmax(dim=1)return pred.reshape(pred.shape[1], pred.shape[2])def label2image(pred):colormap = torch.tensor(VOC_COLORMAP, device=devices[0])X = pred.long()return colormap[X, :]voc_dir = 'E:\\dayLily'
test_images, test_labels = read_voc_images(voc_dir, False)
n, imgs = 4, []
for i in range(n):crop_rect = (0, 0, 500, 500)X = torchvision.transforms.functional.crop(test_images[i], *crop_rect)pred = label2image(predict(X))imgs += [X.permute(1,2,0), pred.cpu(),torchvision.transforms.functional.crop(test_labels[i], *crop_rect).permute(1,2,0)]
show_images(imgs[::3] + imgs[1::3] + imgs[2::3], 3, n, scale=2, suptitle='第一行为原图,第二行为预测结果,第三行为真实结果')




  文中部分知识参考:B 站 —— 跟李沐学AI;百度百科

相关文章:

深度学习 —— 个人学习笔记20(转置卷积、全卷积网络)

声明 本文章为个人学习使用,版面观感若有不适请谅解,文中知识仅代表个人观点,若出现错误,欢迎各位批评指正。 三十九、转置卷积 import torch from torch import nndef trans_conv(X, K):h, w K.shapeY torch.zeros((X.shape[…...

解决Mac系统Python3.12版本pip安装报错error: externally-managed-environment的问题

遇到的问题 在Mac安装了Python3.12.x版本(3.12.3、3.12.4)后,当尝试pip3 install xxx的时候,总是报错:error: externally-managed-environment error: externally-managed-environment This environment is external…...

lvm知识终结

、什么是 LVM LVM 是 Linux 下对磁盘分区进行管理的一种工具,适合管理大存储设备,并允许用户动态调整文件系统的大小 lvm 常用的命令 功能 PV 管理命令 VG 管理命令 LV 管理命令 scan 扫描 pvscan vgscan lvscan create 创建 pvcreate v…...

ESP32S3 IDF 对 16路输入输出芯片MCP23017做了个简单的测试

这次还是使用了idf老版本4.4.7,上次用了5.3,感觉不好用,官方的MCP23017芯片是英文版,真的很难读明白,可能是我英语水平不够吧。先看看每个寄存器的功能: IODIRA 和 IODIRB: 输入/输出方向寄存器 IPOLA 和 I…...

【技术前沿】Flux.1部署教程入门--Stable Diffusion团队最前沿、免费的开源AI图像生成器

项目简介 FLUX.1 是一种新的开源图像生成模型。它由 Stable Diffusion 背后的团队 Black Forest Labs 开发。 官网中有以下功能开源供大家参考: FLUX.1 擅长在图像中准确再现文字,因此非常适合需要清晰文字或短语的设计。无论是标牌、书籍封面还是品牌…...

Redis 的 STREAM 和 RocketMQ 是两种不同的消息队列和流处理解决方案,它们在设计理念、功能和用途上有显著区别。以下是它们的主要区别:

20240813 Redis 的 STREAM 和 RocketMQ 是两种不同的消息队列和流处理解决方案,它们在设计理念、功能和用途上有显著区别。以下是它们的主要区别:1. 使用 Redis 的 Sorted Set 数据结构连接到 Redis示例用法添加事件获取滑动窗口内的事件移除过期事件连接…...

Visual Studio Code安装与C/C++语言运行(上)

Visual Studio Code(VS Code)作为微软开发的一款轻量级但功能强大的源代码编辑器,广泛应用于各种编程语言的开发,包括C/C。以下将详细介绍VS Code的安装过程以及与C/C语言运行环境的配置。 一、Visual Studio Code的安装 1. 准备…...

探索数据可视化,数据看板在各行业中的应用

数据可视化是一种通过图形化手段将数据呈现出来的技术,它将复杂的数据和信息转化为易于理解的图表、地图、仪表盘等视觉元素,使得数据的模式、趋势和关系更加直观地展现出来。通过数据可视化,用户可以快速识别重要信息、发现潜在问题&#xf…...

haralyzer 半自动,一次性少量数据采集快捷方法

使用场景:半自动,一次性少量数据采集需求在工作中还是不少遇到的,无论使用模拟的方式,或者破解都不太划算。其实这种需求,使用半自动爬虫是最简单的。不需要考虑网站反爬虫的问题,因为你使用的就是真实的浏…...

mall-admin-web-master前端项目下载依赖失败解决

碰壁后的总结 pythone 环境 2.XX版本,切记不要3.0以上的。node 16.x不能太高 错误案例 npm ERR! code 1 npm ERR! path D:\workspace\springBootMall\mall-admin-web-master\node_modules\node-sass npm ERR! command failed npm ERR! command C:\windows\system…...

【07】JVM是怎么实现invokedynamic的

在Java中,方法调用会被编译为invokeStatic,invokeSpecial,invokVirtual以及invokeInterface四种指令。这些指令与包含目标方法类名、方法名以及方法描述符的符号引用捆绑,在实际运行之前,JVM根据这个符号引用链接到具体…...

使用API有效率地管理Dynadot域名,查看参与的拍卖列表

前言 Dynadot是通过ICANN认证的域名注册商,自2002年成立以来,服务于全球108个国家和地区的客户,为数以万计的客户提供简洁,优惠,安全的域名注册以及管理服务。 Dynadot平台操作教程索引(包括域名邮箱&…...

Linux 基本指令讲解

linux 基本指令 clear 清屏 Alt Enter 全屏/退出全屏 pwd 显示当前用户所处路径 cd 改变目录 cd /root/mikecd … 返回上级目录cd - 返回最近所处的路径cd ~ 直接返回当前用户自己的家目 roor 中:/root普通用户中:/home/mike mkdir 创建一个文件夹(d) …...

PRE_EMPHASIS

PRE_EMPASIS属性用于提高高频信号的信号完整性 其通过传输线遭受高频损耗。发射机 预加重(pre_EMPASIS)功能允许对某些信号驱动器进行预加重 I/O标准。 提示:发射机的预加重可以与接收机的均衡相结合,以提高 整体信号完整性。 理想…...

【QT常用技术讲解】多线程处理+全局变量处理异步事件并获取多个线程返回的结果

前言 QTableView加入勾选项后(参考【QT常用技术讲解】QTableView添加QCheckBox、QPushButton),如果支持右键菜单功能,此时就有统一执行多个异步事件,并且统一输出到界面的需求了,本篇结合多线程共享全局变量…...

数组列表中的最大距离

给定 m 个数组,每个数组都已经按照升序排好序了。现在你需要从两个不同的数组中选择两个整数(每个数组选一个)并且计算它们的距离。两个整数 a 和 b 之间的距离定义为它们差的绝对值 |a-b| 。你的任务就是去找到最大距离 示例 1:…...

C语言新手小白详细教程(7)指针和指针变量

希望文章能够给到初学的你一些启发~ 如果觉得文章对你有帮助的话,点赞 关注 收藏支持一下笔者吧~ 阅读指南: 开篇说明1、指针的定义接下来我们用图示的形式来解释一下 指针:2、申明指针变量3、取地址符 &4、为指针…...

Kafka保证消息不丢失

Kafka保证消息不丢失 生产者发送消息到Broker丢失 设置异步发送 回调方法中的参数Exception e如果为空 代表发送成功,如果不为空代表发送失败出现异常 消息在Broker中丢失 kafka集群中存在分区机制 分区中分为leader和follower副本 leader负责读写,而follower只负责数据…...

数据结构+基数排序算法

一、问题描述 实现英文单词按字典序排列的基数排序算法 编写一个程序,采用基数排序方法将一组英文单词按字典顺序排 列。假设单词均由小写字母或空格构成,最长的单词有 MaxLen 个 字母,用相关数据进行测试并输出各趟的排序结果。 用例&#…...

C++ list【常用接口、模拟实现等】

1. list的介绍及使用 1.1 list的介绍 1.list是可以在常数范围内在任意位置进行插入和删除的序列式容器,并且该容器可以前后双向迭代。 2.list的底层是双向链表结构,双向链表中每个元素存储在互不相关的独立节点中,在节点中通过指针指向其前…...

12.面试题——Spring Boot

1.Spring Boot是什么? Spring Boot 是 Spring 开源组织下的子项目,是 Spring 组件一站式解决方案,主要是简化了使用 Spring 的难度,简省了繁重的配置,提供了各种启动器,开发者能快速上手。 2.为什么要用 …...

【前端VUE】npm i 出现版本错误等报错 简单直接解决命令

前端vue npm i 安装时出现 报错原因 在新版本的npm中,默认情况下,npm install遇到冲突的peerDependencies时将失败。 解决办法 使用--force或--legacy-peer-deps可解决这种情况。 --force 会无视冲突,并强制获取远端npm库资源&#xff0…...

精彩回顾 | 风丘科技亮相2024名古屋汽车工程博览会

2024年7月17日-19日,风丘科技联合德国IPETRONIK亮相日本名古屋汽车工程博览会。该展会面向汽车行业不同应用场景,包括新的eAxle、FCEV、ADAS、测试测量系统和ECU测试等相关技术,是一个专为活跃在汽车行业前线的工程师和研究人员举办的汽车技术…...

设计模式21-组合模式

设计模式21-组合模式(Composite Pattern) 写在前面 动机定义与结构定义结构主要类及其关系 C代码推导优缺点应用场景总结补充叶子节点不重载这三个方法叶子节点重载这三个方法结论 写在前面 数据结构模式 常常有一些组件在内部具有特定的数据结构。如何…...

如何选择深度学习的损失函数和激活函数

一概述 在深度学习中,损失函数(Loss Function)和激活函数(Activation Function)是两个至关重要的组件,它们共同影响着模型的训练效果和泛化能力。本文将简要介绍这两个概念,阐述选择它们的重要性…...

DATAX自定义KafkaWriter

因为datax目前不支持写入数据到kafka中,因此本文主要介绍如何基于DataX自定义KafkaWriter,用来同步数据到kafka中。本文偏向实战,datax插件开发理论宝典请参考官方文档: https://github.com/alibaba/DataX/blob/master/dataxPlug…...

Mybatis分页多表多条件查询

个人总结三种方式&#xff1a; Xml、queryWrapper、PageHelper第三方组件这三种方式进行查询&#xff1b; 方式一&#xff1a; xml中联表查询&#xff0c;在mapper中传参IPage<T>和条件Map&#xff08;这里用map装参数&#xff09;。 代码示例&#xff1a; Mapper层 M…...

SpringBoot快速入门(手动创建)

目录 案例&#xff1a;需求 步骤 1 创建Maven项目 2 导入SpringBoot起步依赖 3 定义Controller 4 编写引导类 案例&#xff1a;需求 搭建简单的SpringBoot工程&#xff0c;创建hello的类定义h1的方法&#xff0c;返回Hello SpringBoot! 步骤 1 创建Maven项目 大家&…...

C 408—《数据结构》算法题基础篇—数组(通俗易懂)

目录 Δ前言 一、数组的合并 0.题目&#xff1a; 1.算法设计思想&#xff1a; 2.C语言描述&#xff1a; 3.算法的时间和空间复杂度 : 二、数组元素的倒置 0.题目 : 1.算法设计思想 : 2.C语言描述 : 3.算法的时间和空间复杂度 : 三、数组中特定值元素的删除 0.题目 : …...

AI秘境-墨小黑奇遇记 - 初体验(一)

“怎么可能&#xff01;”墨小黑盯着屏幕上的代码&#xff0c;整个人都不好了。调试了三遍&#xff0c;翻了几遍书&#xff0c;结果还是不对。就像你以为自己早起赶车&#xff0c;结果发现闹钟根本没响一样崩溃。 这是他第一次真正接触人工智能实战任务——实现一个简单的感知…...