当前位置: 首页 > news >正文

JS(三)——更改html内数据

  • 获取 DOM 元素,然后修改其属性或内容。使用 getElementById 方法获取特定 ID 的元素:
<p id="myParagraph">这是初始的文本</p>
const paragraph = document.getElementById('myParagraph');
paragraph.innerHTML = '这是修改后的文本';
  • 通过修改元素的属性,比如修改 img 元素的 src 属性:
<img id="myImage" src="old.jpg" />
const image = document.getElementById('myImage');
image.src = 'new.jpg';

使用 getElementsByTagName 或 getElementsByClassName 方法获取一组元素进行修改

<p class="myClass">第一段</p>
<p class="myClass">第二段</p>
const paragraphs = document.getElementsByClassName('myClass');
for (let i = 0; i < paragraphs.length; i++) {paragraphs[i].innerHTML = '修改后的段落';
}

相关文章:

JS(三)——更改html内数据

获取 DOM 元素&#xff0c;然后修改其属性或内容。使用 getElementById 方法获取特定 ID 的元素&#xff1a; <p id"myParagraph">这是初始的文本</p> const paragraph document.getElementById(myParagraph); paragraph.innerHTML 这是修改后的文本…...

CSS小玩意儿:文字适配背景

一&#xff0c;效果 二&#xff0c;代码 1&#xff0c;搭个框架 添加一张背景图片&#xff0c;在图片中显示一行文字。 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport" conte…...

C++:平衡二叉搜索树之红黑树

一、红黑树的概念 红黑树&#xff0c; 和AVL都是二叉搜索树&#xff0c; 红黑树通过在每个节点上增加一个储存位表示节点的颜色&#xff0c; 可以是RED或者BLACK&#xff0c; 通过任何一条从根到叶子的路径上各个节点着色方式的限制&#xff0c;红黑树能够确保没有一条路径会比…...

CentOS 7 系统优化

CentOS 7 系统优化 1、配置YUM源 阿里云的YUM源配置&#xff1a; CentOS 7使用以下命令&#xff1a; sudo wget -O /etc/yum.repos.d/CentOS-Base.repo http://mirrors.aliyun.com/repo/Centos-7.repoCentOS 8使用以下命令&#xff1a; sudo wget -O /etc/yum.repos.d/CentOS…...

扫雷游戏——附源代码

扫雷游戏的源代码比较简单&#xff0c;不设计比较复杂的代码&#xff0c;主要是多个函数的组合&#xff0c;每个函数执行自己的功能&#xff0c;最终支持游戏的完成。 1.菜单 我们需要一个提醒信息来让用户进行选择。 void menu() {printf("***********************\n&…...

Vue3列表(List)

效果如下图&#xff1a;在线预览 APIs List 参数说明类型默认值bordered是否展示边框booleanfalsevertical是否使用竖直样式booleanfalsesplit是否展示分割线booleantruesize列表尺寸‘small’ | ‘middle’ | ‘large’‘middle’loading是否加载中booleanfalsehoverable是否…...

HarmonyOS NEXT - Navigation组件封装BaseNavigation

demo 地址: https://github.com/iotjin/JhHarmonyDemo 代码不定时更新&#xff0c;请前往github查看最新代码 在demo中这些组件和工具类都通过module实现了&#xff0c;具体可以参考HarmonyOS NEXT - 通过 module 模块化引用公共组件和utils 官方介绍 组件导航 (Navigation)(推…...

浅看MySQL数据库

有这么一句话&#xff1a;“一个不会数据库的程序员不是合格的程序员”。有点夸张&#xff0c;但是确是如此。透彻学习数据库是要学习好多知识&#xff0c;需要学的东西也是偏难的。我们今天来看数据库MySQL的一些简单基础东西&#xff0c;跟着小编一起来看一下吧。 什么是数据…...

Pytorch常用训练套路框架(CPU)

文章目录 1. 数据准备示例&#xff1a;加载 CIFAR-10 数据集 2. 模型定义示例&#xff1a;定义一个简单的卷积神经网络 3. 损失函数和优化器示例&#xff1a;定义损失函数和优化器 4. 训练循环示例&#xff1a;训练循环 5. 评估和测试示例&#xff1a;评估模型 6. 保存和加载模…...

C++ | Leetcode C++题解之第338题比特位计数

题目&#xff1a; 题解&#xff1a; class Solution { public:vector<int> countBits(int n) {vector<int> bits(n 1);for (int i 1; i < n; i) {bits[i] bits[i & (i - 1)] 1;}return bits;} };...

智慧校园云平台电子班牌系统源码,智慧教育一体化云解决方案

智慧校园云平台电子班牌系统&#xff0c;利用先进的云计算技术&#xff0c;将教育信息化资源和教学管理系统进行有效整合&#xff0c;实现生态基础数据共享、应用生态统一管理&#xff0c;为智慧教育建设的统一性&#xff0c;稳定性&#xff0c;可扩展性&#xff0c;互通性提供…...

数据库系统 第17节 数据仓库 案例赏析

下面我将通过几个具体的案例来说明数据仓库如何在不同的行业中发挥作用&#xff0c;并解决实际业务问题。 案例 1: 零售业 背景: 一家大型零售商希望改进其库存管理和市场营销策略&#xff0c;以提高销售额和顾客满意度。 解决方案: 数据仓库: 构建一个数据仓库&#xff0…...

硬件面试经典 100 题(71~90 题)

71、请问下图电路的作用是什么&#xff1f; 该电路实现 IIC 信号的电平转换&#xff08;3.3V 和 5V 电平转换&#xff09;&#xff0c;并且是双向通信的。 上下两路是一样的&#xff0c;只分析 SDA 一路&#xff1a; 1&#xff09; 从左到右通信&#xff08;SDA2 为输入状态&…...

【git】代理相关

问题&#xff1a; 开启了翻墙代理工具&#xff0c;拉取代码时报错&#xff1a;fatal: 无法访问 xxxx : Failed to connect to github.com port 443: 连接超时 解决&#xff1a; 0&#xff0c;取消代理仍然无法拉取 1&#xff0c;查看控制面板-网络与Internet-代理&#xff…...

golang gin框架中创建自定义中间件的2种方式总结 - func(*gin.Context)方式和闭包函数方式定义gin中间件

在gin框架中&#xff0c;我们可以通过2种方式创建自定义中间件&#xff1a; 1. 直接定义一个类型为 func(*gin.Context)的函数或者方法 这种方式是我们常用的方式&#xff0c;也就是定义一个参数为*gin.Context的函数或者方法。定义的方法就是创建一个 参数类型为 gin.Handler…...

Linux高级编程 8.13 文件IO

一、文件IO 操作系统为了方便用户使用系统功能而对外提供的一组系统函数。称之为 系统调用&#xff08;unistd.h&#xff09; 其中有个 文件IO&#xff0c;一般都是对设备文件操作,当然也可以对普通文件进行操作。 这是一个基于Linux内核的没有缓存的IO机制 文件IO特性&…...

【k8s】ubuntu18.04 containerd 手动从1.7.15 换为1.7.20

ubutnu18.04之前手动安装了1.7.15现在下载1.7.20containerd-1.7.20-linux-amd64.tar.gz root@k8s-worker-i58265u:/home/zhangbin# root@k8s-worker-i58265u:/home/zhangbin# https://github.com/containerd/containerd/releases/download/v1.7.20/containerd-1.7.20-linux-am…...

常用浮动方式

目录 一、标准流 二、float浮动 三、 flex浮动 3.1flex组成 3.2 主轴对齐方式 3.3侧轴对齐方式 3.4修改主轴方向 3.5弹性盒子换行 3.6行对齐方式 一、标准流 标签在网页中的默认排布规则 例如&#xff1a; 块元素独占一行、行内元素可以一行显示多个 二、float浮动 让块…...

设计模式反模式:UML常见误用案例分析

文章目录 设计模式反模式&#xff1a;UML常见误用案例分析1. 反模式概述2. 反模式的 UML 图示误用2.1 God Object 反模式2.2 Spaghetti Code 反模式2.3 Golden Hammer 反模式2.4 Poltergeist 反模式 3. 总结 设计模式反模式&#xff1a;UML常见误用案例分析 在软件工程领域&am…...

Python编码系列—Python SQL与NoSQL数据库交互:深入探索与实战应用

&#x1f31f;&#x1f31f; 欢迎来到我的技术小筑&#xff0c;一个专为技术探索者打造的交流空间。在这里&#xff0c;我们不仅分享代码的智慧&#xff0c;还探讨技术的深度与广度。无论您是资深开发者还是技术新手&#xff0c;这里都有一片属于您的天空。让我们在知识的海洋中…...

Python爬虫实战:研究MechanicalSoup库相关技术

一、MechanicalSoup 库概述 1.1 库简介 MechanicalSoup 是一个 Python 库,专为自动化交互网站而设计。它结合了 requests 的 HTTP 请求能力和 BeautifulSoup 的 HTML 解析能力,提供了直观的 API,让我们可以像人类用户一样浏览网页、填写表单和提交请求。 1.2 主要功能特点…...

地震勘探——干扰波识别、井中地震时距曲线特点

目录 干扰波识别反射波地震勘探的干扰波 井中地震时距曲线特点 干扰波识别 有效波&#xff1a;可以用来解决所提出的地质任务的波&#xff1b;干扰波&#xff1a;所有妨碍辨认、追踪有效波的其他波。 地震勘探中&#xff0c;有效波和干扰波是相对的。例如&#xff0c;在反射波…...

线程同步:确保多线程程序的安全与高效!

全文目录&#xff1a; 开篇语前序前言第一部分&#xff1a;线程同步的概念与问题1.1 线程同步的概念1.2 线程同步的问题1.3 线程同步的解决方案 第二部分&#xff1a;synchronized关键字的使用2.1 使用 synchronized修饰方法2.2 使用 synchronized修饰代码块 第三部分&#xff…...

《用户共鸣指数(E)驱动品牌大模型种草:如何抢占大模型搜索结果情感高地》

在注意力分散、内容高度同质化的时代&#xff0c;情感连接已成为品牌破圈的关键通道。我们在服务大量品牌客户的过程中发现&#xff0c;消费者对内容的“有感”程度&#xff0c;正日益成为影响品牌传播效率与转化率的核心变量。在生成式AI驱动的内容生成与推荐环境中&#xff0…...

Robots.txt 文件

什么是robots.txt&#xff1f; robots.txt 是一个位于网站根目录下的文本文件&#xff08;如&#xff1a;https://example.com/robots.txt&#xff09;&#xff0c;它用于指导网络爬虫&#xff08;如搜索引擎的蜘蛛程序&#xff09;如何抓取该网站的内容。这个文件遵循 Robots…...

相机Camera日志分析之三十一:高通Camx HAL十种流程基础分析关键字汇总(后续持续更新中)

【关注我,后续持续新增专题博文,谢谢!!!】 上一篇我们讲了:有对最普通的场景进行各个日志注释讲解,但相机场景太多,日志差异也巨大。后面将展示各种场景下的日志。 通过notepad++打开场景下的日志,通过下列分类关键字搜索,即可清晰的分析不同场景的相机运行流程差异…...

c#开发AI模型对话

AI模型 前面已经介绍了一般AI模型本地部署&#xff0c;直接调用现成的模型数据。这里主要讲述讲接口集成到我们自己的程序中使用方式。 微软提供了ML.NET来开发和使用AI模型&#xff0c;但是目前国内可能使用不多&#xff0c;至少实践例子很少看见。开发训练模型就不介绍了&am…...

3403. 从盒子中找出字典序最大的字符串 I

3403. 从盒子中找出字典序最大的字符串 I 题目链接&#xff1a;3403. 从盒子中找出字典序最大的字符串 I 代码如下&#xff1a; class Solution { public:string answerString(string word, int numFriends) {if (numFriends 1) {return word;}string res;for (int i 0;i &…...

【无标题】路径问题的革命性重构:基于二维拓扑收缩色动力学模型的零点隧穿理论

路径问题的革命性重构&#xff1a;基于二维拓扑收缩色动力学模型的零点隧穿理论 一、传统路径模型的根本缺陷 在经典正方形路径问题中&#xff08;图1&#xff09;&#xff1a; mermaid graph LR A((A)) --- B((B)) B --- C((C)) C --- D((D)) D --- A A -.- C[无直接路径] B -…...

快刀集(1): 一刀斩断视频片头广告

一刀流&#xff1a;用一个简单脚本&#xff0c;秒杀视频片头广告&#xff0c;还你清爽观影体验。 1. 引子 作为一个爱生活、爱学习、爱收藏高清资源的老码农&#xff0c;平时写代码之余看看电影、补补片&#xff0c;是再正常不过的事。 电影嘛&#xff0c;要沉浸&#xff0c;…...