深度学习(YOLO、DETR) 十折交叉验证
二:交叉验证
在 K 折验证之前最常用的验证方法就是交叉验证,即把数据划分为训练集、验证集和测试集。一般的划分比例为 7:1:2。但如何合理的抽取样本就成为了使用交叉验证的难点,不同的抽取方法会导致截然不同的训练性能。同时由于验证机和训练集是不参与训练的,导致大量的数据无法应用于学习,所以显而易见的会导致训练的效果下降。
二:K 折交叉验证
将训练集数据划分为 K 部分,利用其中的 K-1 份做为训练,剩余的一份作为测试,最后取平均测试误差做为泛化误差。这样做的好处是,训练集的所有样本都必然会成为训练数据同时页必然有机会成为一次测试集。可以更好的利用训练集数据。
K 越大,平均误差被视为泛化误差这个结果就越可靠,但相应的所花费的时间也是线性增长的。

上图 中 划分测试、训练、验证的时候 平均分成10份 7份训练 1份验证 2份测试 。
按照顺序循环成一个圈 代码如下:
import os
import shutil
import numpy as np#文件地址
postfix = 'jpg'
imgpath = 'D:\\dataset\\images'
txtpath = 'D:\\dataset\\txt'# 创建存储交叉验证结果的基础目录
os.makedirs('cross_validation', exist_ok=True)# 获取文件列表并按文件名排序
listdir = np.array(sorted([i for i in os.listdir(txtpath) if i.endswith('.txt')], key=lambda x: int(x[:-4])))# 将文件列表等分为10份
folds = np.array_split(listdir, 10)# 进行10次交叉验证
for fold in range(10):# 初始化训练、验证、测试集索引train_indices = []val_indices = []test_indices = []# 训练集索引for i in range(7):index = (fold + i) % 10train_indices.extend(folds[index])# 验证集索引val_index = (fold + 7) % 10val_indices.extend(folds[val_index])# 测试集索引test_indices.extend(folds[(fold + 8) % 10])test_indices.extend(folds[(fold + 9) % 10])# 打印每次折的训练集、验证集和测试集的大小print(f'Fold {fold + 1}:')print(f' Train set size: {len(train_indices)}')print(f' Validation set size: {len(val_indices)}')print(f' Test set size: {len(test_indices)}')# 为当前折创建目录fold_dir = f'cross_validation/fold_{fold + 1}'os.makedirs(f'{fold_dir}/images/train', exist_ok=True)os.makedirs(f'{fold_dir}/images/val', exist_ok=True)os.makedirs(f'{fold_dir}/images/test', exist_ok=True)os.makedirs(f'{fold_dir}/labels/train', exist_ok=True)os.makedirs(f'{fold_dir}/labels/val', exist_ok=True)os.makedirs(f'{fold_dir}/labels/test', exist_ok=True)# 将文件复制到当前折的训练、验证和测试目录中for i in train_indices:img_file = f'{imgpath}/{i[:-4]}.jpg'lbl_file = f'{txtpath}/{i}'shutil.copy(img_file, f'{fold_dir}/images/train/{i[:-4]}.jpg')shutil.copy(lbl_file, f'{fold_dir}/labels/train/{i}')for i in val_indices:img_file = f'{imgpath}/{i[:-4]}.jpg'lbl_file = f'{txtpath}/{i}'shutil.copy(img_file, f'{fold_dir}/images/val/{i[:-4]}.jpg')shutil.copy(lbl_file, f'{fold_dir}/labels/val/{i}')for i in test_indices:img_file = f'{imgpath}/{i[:-4]}.jpg'lbl_file = f'{txtpath}/{i}'shutil.copy(img_file, f'{fold_dir}/images/test/{i[:-4]}.jpg')shutil.copy(lbl_file, f'{fold_dir}/labels/test/{i}')

images和txt文件夹下存放文件,没有任何子文件夹
相关文章:
深度学习(YOLO、DETR) 十折交叉验证
二:交叉验证 在 K 折验证之前最常用的验证方法就是交叉验证,即把数据划分为训练集、验证集和测试集。一般的划分比例为 7:1:2。但如何合理的抽取样本就成为了使用交叉验证的难点,不同的抽取方法会导致截然不同的训练性…...
基于php网上差旅费报销系统设计与实现
网上报销系统以LAMP(LinuxApacheMySQLPHP)作为平台,涉及到PHP语言、MySQL数据库、JavaScript语言、HTML语言。 2.1 PHP语言简介 PHP,一个嵌套的缩写名称,是英文 “超级文本预处理语言”(PHP: Hypertext Preprocessor)的缩写。P…...
微服务及安全
一、微服务的原理 1.什么是微服务架构 微服务架构区别于传统的单体软件架构,是一种为了适应当前互联网后台服务的「三高需求:高并发、高性能、高可用」而产生的的软件架构。 单体式应用程序 与微服务相对的另一个概念是传统的单体式应用程序( Monolithic application ),…...
图文详解ThreadLocal:原理、结构与内存泄漏解析
目录 一.什么是ThreadLocal 二.ThreadLocal的内部结构 三.ThreadLocal带来的内存泄露问题 ▐ key强引用 ▐ key弱引用 总结 一.什么是ThreadLocal 在Java中,ThreadLocal 类提供了一种方式,使得每个线程可以独立地持有自己的变量副本,而…...
基于java的综合小区管理系统论文.doc
摘 要 如今社会上各行各业,都喜欢用自己行业的专属软件工作,互联网发展到这个时候,人们已经发现离不开了互联网。新技术的产生,往往能解决一些老技术的弊端问题。因为传统综合小区管理系统信息管理难度大,容错率低&am…...
如何合理设置PostgreSQL的`max_connections`参数
合理设置PostgreSQL的max_connections参数对于数据库的稳定性和性能至关重要。这个设置值决定了允许同时连接到数据库的最大客户端数量。如果设置不当,可能导致资源浪费或系统过载。以下是设置max_connections时需要考虑的几个关键因素: 1. 评估系统硬件…...
Kubectl 常用命令汇总大全
kubectl 是 Kubernetes 自带的客户端,可以用它来直接操作 Kubernetes 集群。 从用户角度来说,kubectl 就是控制 Kubernetes 的驾驶舱,它允许你执行所有可能的 Kubernetes 操作;从技术角度来看,kubectl 就是 Kubernetes…...
【Linux】Linux环境基础开发工具使用之Linux调试器-gdb使用
目录 一、程序发布模式1.1 debug模式1.2 release模式 二、默认发布模式三、gdb的使用结尾 一、程序发布模式 程序的发布方式有两种,debug模式和release模式 1.1 debug模式 目的:主要用于开发和测试阶段,目的是让开发者能够更容易地调试和跟…...
clickhouse_driver
一、简介 clickhouse_driver是一个Python库,用于与ClickHouse数据库进行交互。ClickHouse是一个高性能的列式数据库管理系统(DBMS),它适用于实时分析(OLAP)场景。clickhouse_driver模块提供了与ClickHouse…...
BI分析实操案例分享:零售企业如何利用BI工具对销售数据进行分析?
在当下这个竞争激烈的零售市场,企业如何在波诡云谲的商场中站稳脚跟,实现销售目标的翻倍增长? 答案可能就藏在那些看似杂乱无章的数字里。 是的,你没有看错,答案正是那些我们日常接触的销售数据。它们就像是宝藏&…...
python : Requests请求库入门使用指南 + 简单爬取豆瓣影评
Requests 是一个用于发送 HTTP 请求的简单易用的 Python 库。它能够处理多种 HTTP 请求方法,如 GET、POST、PUT、DELETE 等,并简化了 HTTP 请求流程。对于想要进行网络爬虫或 API 调用的开发者来说,Requests 是一个非常有用的工具。在今天的博…...
宋红康JVM调优思维导图
文章目录 1. 概述2. JVM监控及诊断命令-命令行篇3. JVM监控及诊断工具-GUI篇4. JVM运行时参数5. 分析GC日志 课程地址 1. 概述 2. JVM监控及诊断命令-命令行篇 3. JVM监控及诊断工具-GUI篇 4. JVM运行时参数 5. 分析GC日志...
linux 网卡配置
linux网卡可以通过命令和配置文件配置,如果是桌面环境还可以通过图形化界面配置. 1.ifconfig(interfaces config)命令方式 通常需要以root身份登录或使用sudo以便在Linux机器上使用ifconfig工具。依赖于ifconfig命令中使用一些选项属性,ifconfig工具不仅可以被用来…...
IEEE |第五届机器学习与计算机应用国际学术会议(ICMLCA 2024)
第五届机器学习与计算机应用国际学术会议(ICMLCA 2024)定于2024年10月18-20日在中国杭州隆重举行。本届会议将主要关注机器学习和计算机应用面临的新的挑战问题和研究方向,着力反映国际机器学习和计算机应用相关技术研究的最新进展。 IEEE |第五届机器学习与计算机应…...
【网络安全】漏洞挖掘:IDOR实例
未经许可,不得转载。 文章目录 正文 正文 某提交系统,可以选择打印或下载passport。 点击Documents > Download后,应用程序将执行 HTTP GET 请求: /production/api/v1/attachment?id4550381&enamemId123888id为文件id&am…...
vue项目执行 cnpm install 报错证书过期的解决方案
拉下源码后执行依赖安装过程,报错 error Error: Certificate has expired,可以通过一下方发解决:npm config set strict-ssl false 再执行 cnpm 命令即可正常拉依赖...
XGboost的安装与使用
安装xgboost: conda install py-xgboost下载demo的数据: https://github.com/dmlc/xgboost 安装graphviz conda install python-graphviz数据 在demo/data里面: 训练集是:agaricus.txt.train、测试集是:agaricus…...
【AI趋势9】开源普惠
关于开源的问题,可以参考我之前的文章: 再说开源软件-CSDN博客 【AI】马斯克说大模型要开源,我们缺的是源代码?(附一图看懂6大开源协议)_分开源和闭源,我们要的当然是开源,马斯克开源。-CSDN博客 一、开…...
【Spark集群部署系列一】Spark local模式介绍和搭建以及使用(内含Linux安装Anaconda)
简介 注意: 在部署spark集群前,请部署好Hadoop集群,jdk8【当然Hadoop集群需要运行在jdk上】,需要注意hadoop,spark的版本,考虑兼容问题。比如hadoop3.0以上的才兼容spark3.0以上的。 下面是Hadoop集群部署…...
泛微OA 常用数据库表
HrmDepartment 人力资源部门 HrmSubCompany 人力资源分部 HrmResource 员工信息表 HrmRoles 角色信息表 T_Condition 报表条件 T_ConditionDetail 报表条件详细值 T_DatacenterUser 基层用户信息 T_FadeBespeak 调查退订表 T_fieldItem 调查项目表输入项信息 T_fieldItemDetail…...
【Linux】shell脚本忽略错误继续执行
在 shell 脚本中,可以使用 set -e 命令来设置脚本在遇到错误时退出执行。如果你希望脚本忽略错误并继续执行,可以在脚本开头添加 set e 命令来取消该设置。 举例1 #!/bin/bash# 取消 set -e 的设置 set e# 执行命令,并忽略错误 rm somefile…...
树莓派超全系列教程文档--(62)使用rpicam-app通过网络流式传输视频
使用rpicam-app通过网络流式传输视频 使用 rpicam-app 通过网络流式传输视频UDPTCPRTSPlibavGStreamerRTPlibcamerasrc GStreamer 元素 文章来源: http://raspberry.dns8844.cn/documentation 原文网址 使用 rpicam-app 通过网络流式传输视频 本节介绍来自 rpica…...
遍历 Map 类型集合的方法汇总
1 方法一 先用方法 keySet() 获取集合中的所有键。再通过 gey(key) 方法用对应键获取值 import java.util.HashMap; import java.util.Set;public class Test {public static void main(String[] args) {HashMap hashMap new HashMap();hashMap.put("语文",99);has…...
基于uniapp+WebSocket实现聊天对话、消息监听、消息推送、聊天室等功能,多端兼容
基于 UniApp + WebSocket实现多端兼容的实时通讯系统,涵盖WebSocket连接建立、消息收发机制、多端兼容性配置、消息实时监听等功能,适配微信小程序、H5、Android、iOS等终端 目录 技术选型分析WebSocket协议优势UniApp跨平台特性WebSocket 基础实现连接管理消息收发连接…...
Nginx server_name 配置说明
Nginx 是一个高性能的反向代理和负载均衡服务器,其核心配置之一是 server 块中的 server_name 指令。server_name 决定了 Nginx 如何根据客户端请求的 Host 头匹配对应的虚拟主机(Virtual Host)。 1. 简介 Nginx 使用 server_name 指令来确定…...
三分算法与DeepSeek辅助证明是单峰函数
前置 单峰函数有唯一的最大值,最大值左侧的数值严格单调递增,最大值右侧的数值严格单调递减。 单谷函数有唯一的最小值,最小值左侧的数值严格单调递减,最小值右侧的数值严格单调递增。 三分的本质 三分和二分一样都是通过不断缩…...
代码规范和架构【立芯理论一】(2025.06.08)
1、代码规范的目标 代码简洁精炼、美观,可持续性好高效率高复用,可移植性好高内聚,低耦合没有冗余规范性,代码有规可循,可以看出自己当时的思考过程特殊排版,特殊语法,特殊指令,必须…...
打手机检测算法AI智能分析网关V4守护公共/工业/医疗等多场景安全应用
一、方案背景 在现代生产与生活场景中,如工厂高危作业区、医院手术室、公共场景等,人员违规打手机的行为潜藏着巨大风险。传统依靠人工巡查的监管方式,存在效率低、覆盖面不足、判断主观性强等问题,难以满足对人员打手机行为精…...
认识CMake并使用CMake构建自己的第一个项目
1.CMake的作用和优势 跨平台支持:CMake支持多种操作系统和编译器,使用同一份构建配置可以在不同的环境中使用 简化配置:通过CMakeLists.txt文件,用户可以定义项目结构、依赖项、编译选项等,无需手动编写复杂的构建脚本…...
【1】跨越技术栈鸿沟:字节跳动开源TRAE AI编程IDE的实战体验
2024年初,人工智能编程工具领域发生了一次静默的变革。当字节跳动宣布退出其TRAE项目(一款融合大型语言模型能力的云端AI编程IDE)时,技术社区曾短暂叹息。然而这一退场并非终点——通过开源社区的接力,TRAE在WayToAGI等…...
