当前位置: 首页 > news >正文

机器学习笔记三-检测异常值

检测异常值是数据预处理中非常重要的一步,因为异常值可能会影响模型的训练效果,甚至导致错误的结论。以下是几种常见的检测异常值的方法:

1. 箱线图(Box Plot)

箱线图是一种简单的统计图形,可以直观地显示数据的分布情况及其离群点(异常值)。在箱线图中,异常值通常定义为超出“盒须”范围的点。

  • IQR(四分位距)方法

    • 箱线图的盒子代表数据的第一四分位数(Q1,25%)和第三四分位数(Q3,75%)。
    • 四分位距(IQR)定义为 Q3 - Q1。
    • 异常值通常定义为小于 Q1 - 1.5 * IQR 或大于 Q3 + 1.5 * IQR 的数据点。
    import pandas as pd
    import numpy as np
    import matplotlib.pyplot as plt# 示例数据
    data = np.random.randn(100)  # 生成100个正态分布的数据点
    data = np.append(data, [10, -10])  # 添加几个异常值# 绘制箱线图
    plt.boxplot(data)
    plt.show()# 使用IQR方法检测异常值
    Q1 = np.percentile(data, 25)
    Q3 = np.percentile(data, 75)
    IQR = Q3 - Q1lower_bound = Q1 - 1.5 * IQR
    upper_bound = Q3 + 1.5 * IQRoutliers = data[(data < lower_bound) | (data > upper_bound)]
    print("Detected Outliers:", outliers)
    

2. 标准差方法

标准差法适用于数据呈正态分布的情况。异常值通常定义为超出平均值 μ \mu μ的3倍标准差 σ \sigma σ 的数据点。

  • 公式

    • 异常值定义为小于 μ − 3 σ \mu - 3\sigma μ3σ 或大于 μ + 3 σ \mu + 3\sigma μ+3σ 的数据点。
    mean = np.mean(data)
    std_dev = np.std(data)lower_bound = mean - 3 * std_dev
    upper_bound = mean + 3 * std_devoutliers = data[(data < lower_bound) | (data > upper_bound)]
    print("Detected Outliers using Standard Deviation:", outliers)
    

3. Z-score 方法

Z-score 表示数据点与均值的偏离程度,用于判断该数据点是否为异常值。Z-score 方法适用于数据呈正态分布的情况。

  • 公式

    • Z-score = x − μ σ \frac{x - \mu}{\sigma} σxμ
    • 当 Z-score 的绝对值大于某个阈值(通常为 3)时,该数据点被认为是异常值。
    from scipy import statsz_scores = stats.zscore(data)
    outliers = data[np.abs(z_scores) > 3]
    print("Detected Outliers using Z-score:", outliers)
    

4. 使用 Mahalanobis 距离

Mahalanobis 距离考虑了数据的协方差结构,适合检测多变量数据中的异常值。

  • 公式

    • Mahalanobis 距离 D 2 = ( x − μ ) T Σ − 1 ( x − μ ) D^2 = (x - \mu)^T \Sigma^{-1} (x - \mu) D2=(xμ)TΣ1(xμ)
    • 异常值通常定义为 Mahalanobis 距离超过某个阈值的数据点。
    from scipy.spatial import distance# 示例多维数据
    data = np.random.randn(100, 2)
    mean = np.mean(data, axis=0)
    cov_matrix = np.cov(data, rowvar=False)mahalanobis_distances = [distance.mahalanobis(x, mean, np.linalg.inv(cov_matrix)) for x in data]threshold = np.percentile(mahalanobis_distances, 97.5)  # 选择一个合适的阈值
    outliers = data[np.array(mahalanobis_distances) > threshold]
    print("Detected Outliers using Mahalanobis Distance:", outliers)
    

5. 视觉化异常值检测

通过绘制散点图、直方图等图表,可以直观地观察数据分布并识别可能的异常值。

6. 处理异常值的方法

  • 删除: 直接删除异常值,适用于异常值数量很少的情况。
  • 替换: 使用均值、中位数或插值方法替换异常值。
  • 模型化: 在一些情况下,异常值可能是数据的有效部分,可以通过重新建模来处理这些异常值。

总结:

不同的方法适用于不同类型的数据和异常值检测场景。在实际应用中,通常结合多种方法进行异常值检测,并根据业务需求和数据特点采取适当的处理策略。

相关文章:

机器学习笔记三-检测异常值

检测异常值是数据预处理中非常重要的一步&#xff0c;因为异常值可能会影响模型的训练效果&#xff0c;甚至导致错误的结论。以下是几种常见的检测异常值的方法&#xff1a; 1. 箱线图&#xff08;Box Plot&#xff09;&#xff1a; 箱线图是一种简单的统计图形&#xff0c;可…...

如何评估Redis的性能

导语 Redis是一款高性能的内存数据库&#xff0c;被广泛用于缓存、持久化、消息队列等各种场景。为了确保Redis的高性能运行&#xff0c;评估Redis的性能是非常重要的。本文将介绍如何评估Redis的性能&#xff0c;并从问题解决的角度探讨如何优化Redis的性能。 1. 性能评估指…...

RabbitMQ发布订阅模式Publish/Subscribe详解

订阅模式Publish/Subscribe 基于API的方式1.使用AmqpAdmin定制消息发送组件2.消息发送者发送消息3.消息消费者接收消息 基于配置类的方式基于注解的方式总结 SpringBoot整合RabbitMQ中间件实现消息服务&#xff0c;主要围绕3个部分的工作进行展开&#xff1a;定制中间件、消息发…...

Android8.1源码下对APK进行系统签名

在Android8.1上面对APK进行Android系统源码环境下的签名,发现签名时出现如下错误: Exception in thread "main" java.lang.ExceptionInInitializerError at org.conscrypt.OpenSSLBIOInputStream.(OpenSSLBIOInputStream. at org.conscrypt.OpenSSLX509Certificat…...

2024年城市客运安全员考试题库及答案

一、单选题 376.根据《机动车运行安全技术条件》&#xff08;GB7258---2017&#xff09;&#xff0c;每个应急出口应在其附近设有"应急出口"字样&#xff0c;字体高度应大于或等于&#xff08;&#xff09;mm。 A.20 B.30 C.40 D.50 答案&#xff1a;C 377.根…...

全网最全面的Nginx内容(理论与实践相结合)

一、Web服​​务 1.1 web服务访问流程 1.2 Web服务 1.2.1 Web服务器分类 Web服务分为Apache和Nginx 1.2.2 Apache经典的Web服务器 1.2.2.1 Apache介绍 Apache HTTP Server&#xff08;简称Apache&#xff09;是Apache软件基金会的一个开放源码的网页服务器&#xff0c;可以…...

(七)Flink Watermark

Flink 的 Watermark 是用来标识数据流中的一个时间点。Watermark 的设计是为了解决乱序数据处理的问题,尤其是涉及到多个分区的 Kafka 消费者时。在 Watermark 的作用下,即使某些数据出现了延迟到达的情况,也不会导致整个处理流程的中断。此外,Watermark 还能防止过期的数据…...

springboot 上传文件失败:The temporary upload location

Caused by: java.io.IOException: The temporary upload location [/tmp/tomcat.379776875189163783.8081/work/Tomcat/localhost/jcys-core] is not valid 原因&#xff1a; Linux下会自动清除tmp目录下10天没有使用过的文件&#xff0c;SpringBoot启动的时候会在/tmp目录下生…...

UNiapp之微信小程序导出Excel

效果如下 参考小程序&#xff1a;日常记一记 ---账单页面 主要功能是根据筛选条件导出账单明细列表&#xff0c;实现该功能主要借助一个工具(excel.js)&#xff0c;可在文章顶部下载或者一下网盘下载 https://pan.baidu.com/s/1RLisuG4_7FGD0Cnwewyabg?pwdpd2a 提取码: pd2a…...

fsadsadsad

adsadsafsada...

高效录制新选择:2024年Windows录屏软件

录屏能帮助我们捕捉屏幕上的精彩瞬间&#xff0c;作为老师可以用来录制课程&#xff0c;作为会议记录员可以用来录制远程会议。那么有什么软件是适合windows录屏的呢&#xff1f;这次我们一起来探讨一下吧。 1.福昕录屏大师 链接&#xff1a;www.foxitsoftware.cn/REC/ 这款软…...

Java技术面试(一面)

1、相面对象 1、面相对象语言/Java三大特性是什么? 引出 封装、‌继承和多态。 2、多态有哪些形式?多态使用过吗? 重载、重写,接口和抽象类的多个实现。考察工作经验、代码重构经验、习惯。 3、Java接口和抽象类有什么区别?你是如何选择使用的? 考察OOP的理解和工作…...

docker修改数据目录

新建docker数据目录 mkdir /data/docker-data停止docker服务 systemctl stop docker把docker数据迁移到新目录 cp -r /var/lib/docker/* /data/docker-data/修改docker配置 vi /etc/docker/daemon.json #添加data-root参数 {"data-root":"/data/docker-dat...

Appium学习

一、基础配置 import unittest from appium import webdriver from appium.options.android import UiAutomator2Options from appium.webdriver.common.appiumby import AppiumBy from selenium.webdriver.support.ui import WebDriverWait from selenium.webdriver.support …...

回顾 | 瑞云科技亮相ICIC2024,虚拟仿真实训云平台引关注

2024年8月7日&#xff0c;天津市虚拟仿真学会主办的第二十届智能计算国际会议&#xff08;ICIC2024&#xff09;——虚拟仿真技术交流平行会议暨天津市虚拟仿真学会2024年暑期技术交流会在天津盛大召开。本次大会汇聚来自全国的顶尖专家、学者和行业领袖&#xff0c;共同探讨虚…...

libLZMA库iOS18平台编译

1.下载xz源码: 使用autogen.sh生成configure文件 2.生成makefile rm -rf ./build/iOS && mkdir -p ./build/iOS && cd ./build/iOS && ../../configure --host=arm-apple-darwin64 --prefix=`pwd`/Frameworks/lzma CC="xcrun -sdk iphoneos cl…...

《AI办公类工具PPT系列之二——iSlide AI》

一.简介 官网:iSlide- 让PPT设计简单起来 | PPT模板下载平台 iSlide AI是一款基于人工智能技术的PPT制作工具,它可以帮助用户快速高效地创建演示文稿 二.功能介绍 1. AI一键生成PPT 文档导入与解析:用户可以直接上传本地文档(如Word、Markdown、思维导图等),iSlide A…...

C语言基础(六)

一维数组&#xff1a; C语言中的数组是一种基本的数据结构&#xff0c;用于在计算机内存中连续存储相同类型的数据。 数组中的每个元素可以通过索引&#xff08;或下标&#xff09;来访问&#xff0c;索引通常是从0开始的。 数组的大小在声明时确定&#xff0c;并且之后不能改…...

什么是词向量?如何得到词向量?Embedding 快速解读

我第一次接触 Embedding 是在 Word2Vec 时期&#xff0c;那时候还没有 Transformer 和 BERT 。Embedding 给我的印象是&#xff0c;可以将词映射成一个数值向量&#xff0c;而且语义相近的词&#xff0c;在向量空间上具有相似的位置。 有了 Embedding &#xff0c;就可以对词进…...

AI视频创作应用

重磅推荐专栏: 《大模型AIGC》 《课程大纲》 《知识星球》 本专栏致力于探索和讨论当今最前沿的技术趋势和应用领域,包括但不限于ChatGPT和Stable Diffusion等。我们将深入研究大型模型的开发和应用,以及与之相关的人工智能生成内容(AIGC)技术。通过深入的技术解析和实践经…...

JAVA常见的工具类之Object类(超详细)

1、Java API简介 Java API(Java Application Programming Interface)是Java应用程序编程接口的缩写。Java中的API&#xff0c;就是JDK提供的具有各种功能的Java类&#xff0c;灵活使用Java API能够大大提高使用Java语言编写程序的效率。 Java API的帮助文档可到 http://docs.or…...

深度学习(YOLO、DETR) 十折交叉验证

二&#xff1a;交叉验证 在 K 折验证之前最常用的验证方法就是交叉验证&#xff0c;即把数据划分为训练集、验证集和测试集。一般的划分比例为 7&#xff1a;1&#xff1a;2。但如何合理的抽取样本就成为了使用交叉验证的难点&#xff0c;不同的抽取方法会导致截然不同的训练性…...

基于php网上差旅费报销系统设计与实现

网上报销系统以LAMP(LinuxApacheMySQLPHP)作为平台,涉及到PHP语言、MySQL数据库、JavaScript语言、HTML语言。 2.1 PHP语言简介 PHP&#xff0c;一个嵌套的缩写名称&#xff0c;是英文 “超级文本预处理语言”&#xff08;PHP: Hypertext Preprocessor&#xff09;的缩写。P…...

微服务及安全

一、微服务的原理 1.什么是微服务架构 微服务架构区别于传统的单体软件架构,是一种为了适应当前互联网后台服务的「三高需求:高并发、高性能、高可用」而产生的的软件架构。 单体式应用程序 与微服务相对的另一个概念是传统的单体式应用程序( Monolithic application ),…...

图文详解ThreadLocal:原理、结构与内存泄漏解析

目录 一.什么是ThreadLocal 二.ThreadLocal的内部结构 三.ThreadLocal带来的内存泄露问题 ▐ key强引用 ▐ key弱引用 总结 一.什么是ThreadLocal 在Java中&#xff0c;ThreadLocal 类提供了一种方式&#xff0c;使得每个线程可以独立地持有自己的变量副本&#xff0c;而…...

基于java的综合小区管理系统论文.doc

摘 要 如今社会上各行各业&#xff0c;都喜欢用自己行业的专属软件工作&#xff0c;互联网发展到这个时候&#xff0c;人们已经发现离不开了互联网。新技术的产生&#xff0c;往往能解决一些老技术的弊端问题。因为传统综合小区管理系统信息管理难度大&#xff0c;容错率低&am…...

如何合理设置PostgreSQL的`max_connections`参数

合理设置PostgreSQL的max_connections参数对于数据库的稳定性和性能至关重要。这个设置值决定了允许同时连接到数据库的最大客户端数量。如果设置不当&#xff0c;可能导致资源浪费或系统过载。以下是设置max_connections时需要考虑的几个关键因素&#xff1a; 1. 评估系统硬件…...

Kubectl 常用命令汇总大全

kubectl 是 Kubernetes 自带的客户端&#xff0c;可以用它来直接操作 Kubernetes 集群。 从用户角度来说&#xff0c;kubectl 就是控制 Kubernetes 的驾驶舱&#xff0c;它允许你执行所有可能的 Kubernetes 操作&#xff1b;从技术角度来看&#xff0c;kubectl 就是 Kubernetes…...

【Linux】Linux环境基础开发工具使用之Linux调试器-gdb使用

目录 一、程序发布模式1.1 debug模式1.2 release模式 二、默认发布模式三、gdb的使用结尾 一、程序发布模式 程序的发布方式有两种&#xff0c;debug模式和release模式 1.1 debug模式 目的&#xff1a;主要用于开发和测试阶段&#xff0c;目的是让开发者能够更容易地调试和跟…...

clickhouse_driver

一、简介 clickhouse_driver是一个Python库&#xff0c;用于与ClickHouse数据库进行交互。ClickHouse是一个高性能的列式数据库管理系统&#xff08;DBMS&#xff09;&#xff0c;它适用于实时分析&#xff08;OLAP&#xff09;场景。clickhouse_driver模块提供了与ClickHouse…...

国内做性视频网站有哪些/百度开户返点

AMD公司今日发布AMD EPYC™(霄龙)7000系列高性能数据中心处理器&#xff0c;与全球服器生态系统的合作伙伴共同开启数据中心发展的新时代。AMD与众多客户和合作伙伴共同启动了全球发布会&#xff0c;带来了一系列系统和性能演示&#xff0c;以及客户的背书。AMD EPYC采用创记录…...

找网站做q币/线上推广策略

代码块概述 ●代码块是类的5大成分之一(成员变量、构造器&#xff0c;方法&#xff0c;代码块&#xff0c;内部类)&#xff0c;定义在类中方法外。 ●在ava类下&#xff0c;使用{}括起来的代码被称为代码块。 代码块分为 静态代码块: 格式:static{ 特点:需要通过static关键字修…...

wordpress让分类在根目录/网站权重如何查询

国内的网站总是做的花花哨哨&#xff0c;总担心自己的网站做的不好看&#xff0c;留不住观众&#xff0c;于是乎就在网冲上面大把大把的加图片&#xff0c;然后再加上炫人眼目的FLASH&#xff0c;这样好看是好看了&#xff0c;可是有些时候就给人的感觉进入了一个迷宫&#xff…...

华为云自助建站/推广链接点击器app

&#x1f468;‍&#x1f393;个人主页&#xff1a;研学社的博客&#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️&#x1f4a5;&#x1f4a5;&#x1f3c6;博主优势&#xff1a;&#x1f31e;&#x1f31e;&#x1f31e;博客内容尽量做到思维缜密…...

最近新闻报道/淘宝seo是什么意思啊

场景&#xff1a;某个活动需要使用二维码来分享活动&#xff0c;引流量入口&#xff0c;我使用google的zxing在服务器生成二维码时候&#xff0c;接口需要接收一个名为url的参数&#xff0c;这个参数的实际取值是个动态链接&#xff0c;比如&#xff1a;http://ac.txqq.com?ur…...

做网站用什么语音/seo排名快速上升

netty——私有协议栈开发案例 摘要&#xff1a; 在学习李林峰老师的Netty权威指南中&#xff0c;觉得第十二章《私有协议栈开发》中的案例代码比较有代表性&#xff0c;讲的也不错&#xff0c;但是代码中个人认为有些简单的错误&#xff0c;个人经过简单的修改&#xff0c;编译…...