当前位置: 首页 > news >正文

最大连续1的个数 III(LeetCode)

题目

        给定一个二进制数组 nums 和一个整数 k,如果可以翻转最多 k 个 0 ,则返回 数组中连续 1 的最大个数 。

解题

def longestOnes(nums, k):left = 0max_len = 0zero_count = 0for right in range(len(nums)):# 如果遇到0,统计当前窗口内0的个数if nums[right] == 0:zero_count += 1# 如果窗口内的0的个数超过了k,移动左指针while zero_count > k:if nums[left] == 0:zero_count -= 1left += 1# 计算当前窗口内1的最大长度max_len = max(max_len, right - left + 1)return max_lennums = [1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1]
k = 2
print(longestOnes(nums, k))  # 输出: 8

相关文章:

最大连续1的个数 III(LeetCode)

题目 给定一个二进制数组 nums 和一个整数 k,如果可以翻转最多 k 个 0 ,则返回 数组中连续 1 的最大个数 。 解题 def longestOnes(nums, k):left 0max_len 0zero_count 0for right in range(len(nums)):# 如果遇到0,统计当前窗口内0的个…...

Vue之前端批量下载文件并以压缩包形式存储

后端返回一个文件链接的数组,前端处理下载逻辑,并且将这些文件存储在压缩包内部,这用的jszip 和 file-saver 这两个库。 步骤说明 1.使用 npm 或 yarn 安装 jszip 和 file-saver。 npm install jszip file-saver 2.获取文件内容&#xff1a…...

【AI学习】LLaMA模型的微调成本有几何?

在前面文章《LLaMA 系列模型的进化(二)》中提到了Stanford Alpaca模型。 Stanford Alpaca 基于LLaMA (7B) 进行微调,通过使用 Self-Instruct 方法借助大语言模型进行自动化的指令生成,Stanford Alpaca 生成了 52K 条指令遵循样例数…...

【专题】2024全数驱动 致胜未来-数字化敏捷银行白皮书报告合集PDF分享(附原数据表)

原文链接: https://tecdat.cn/?p37404 政策明确发展使命,新时代商业银行应坚持党建引领,秉持高质量发展理念。数字经济已成大势,商业银行需构建数字基础设施能力,强化顶层战略规划。当前商业银行数字化发展面临诸多挑…...

280Hz显示器哪家强

280Hz显示器哪家强?今天就给大家带来6大品牌和型号的280Hz显示器一起对比对比! 1.280Hz显示器 - HKC G27H3显示器 HKC G27H3是一款高性价比的电竞显示器,以下是它的一些特点: - **高刷新率与快速响应**: - 拥有280H…...

ROUTE_STATUS

ROUTE_STATUS是一个只读属性,由Vivado路由器分配给网络 反映网络上路由的当前状态。 该属性可以由单个网络或一组网络使用 get_property或report_property命令。该物业由 report_route_status命令返回整个设计的route_status。 架构支持 所有架构。 适用对象 •网络…...

v4l2(video4linux2) yuyv(yuv422)、MJPEG、H.264

V4L2(Video4Linux2)是Linux内核中的视频设备接口框架,专门用于捕获和输出视频数据。V4L2广泛应用于各种视频设备的驱动程序开发,如网络摄像头、电视调谐器、视频采集卡、以及其他视频输入/输出设备。 ### V4L2的主要功能 1. **视…...

.Net插件开发开源框架

在.NET开发中,有许多开源框架可以用于插件开发,以下是一些最常见的框架: MEF(Managed Extensibility Framework) MEF是一个用于创建可插拔软件应用程序的库,它可以在不修改原始应用程序的情况下扩展应用程…...

基于Spark实现大数据量的Node2Vec

基于Spark实现大数据量的Node2Vec Node2Vec 是一种基于图的学习算法,用于生成图中节点的低维度、高质量的向量表示。这种算法基于 word2vec 模型,将自然语言处理中的词嵌入技术应用于图结构的节点,以捕捉节点之间的复杂关系。Node2Vec 特别强…...

[VMware]VMware-Esxi 6.7 厚置备转为精简置备

背景:创建了一个win10 60G的厚置备磁盘,现在想改为精简置备。 先关闭win10系统,并删除快照 1、开启shell 2、登录到虚拟存放的目录 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 [rootxxx:~] cd /vmfs/volumes/5fea055e-458157d3-c8f8-8cec4ba51c4…...

vue面试题十八

一、Vue 3中的样式绑定有哪些新特性? Vue 3中的样式绑定保持了与Vue 2相似的灵活性和强大功能,同时引入了一些新的特性和改进,主要集中在响应式系统和Composition API上。以下是Vue 3中样式绑定的主要新特性及其说明: 1. 响应式…...

windows C++-windows C++/CX简介(三)

^类型 (^) 是 C/CX 最突出的功能之一——当人们第一次看到 C/CX 代码时,很难不注意到它。那么,^ 类型到底是什么?这是类型是一种智能指针类型,它自动管理 Windows 运行时对象的生命周期,也 提供自动类型转换功能以简化…...

《黑神话.悟空》:一场跨越神话与现实的深度探索

《黑神话.悟空》:一场跨越神话与现实的深度探索 在国产游戏日益崛起的今天,《黑神话.悟空》以其独特的剧情、丰富的人物设定和深刻的主题,成为了无数玩家翘首以盼的国产3A大作。这款游戏不仅是一次对传统故事的创新演绎,更是一场对…...

【Kotlin设计模式】建造者模式在Android中的应用

前言 建造者模式(Builder Pattern)是一种创建型设计模式,一步一步地构建一个复杂对象的不同部分,而不是直接创建该对象的实例。建造者模式的核心思想是将对象的构建过程与其表示分离,使得同样的构建过程可以创建不同的…...

Kafka 性能为什么比 RocketMQ 好

Kafka 性能更好的原因 因为 kafka 零拷贝技术跟 RocketMQ 的不一样。 kafka 零拷贝技术使用的是 sendfileDMA scatter/gather 。只需要经过 2 次拷贝,2 次上下文切换RocketMQ 零拷贝使用的 mmap 内存映射,需要经过 3 次拷贝,4 次上下文切换…...

el-image的配套使用(表格,表单)

1. 配合table在一起使用&#xff0c;支持预览 此处使用场景是表格中只显示一张图片 preview-src-list只支持数组&#xff0c;故需要将单个字符串转换为转换为字符串数组 <el-table-column align"center" label"二维码"><template slot-scope&q…...

MKS MWH-5匹配器Automatc matching impedance Network手侧

MKS MWH-5匹配器Automatc matching impedance Network手侧...

打卡50天------图论

正式开启图论了&#xff0c;作为一个前端工程师&#xff0c;这个代码随想录真的刷新了我对于算法的认知&#xff0c;每天都在学习新东西。 别着急、放轻松、慢慢来。 一、图论理论基础 二、深搜理论基础 了解一下深搜的原理和过程&#xff0c;其实对于深搜和广搜我自己也写过…...

实现 FastCGI

CGI的由来&#xff1a; 最早的 Web 服务器只能简单地响应浏览器发来的 HTTP 请求&#xff0c;并将存储在服务器上的 HTML 文件返回给浏 览器&#xff0c;也就是静态 html 文件&#xff0c;但是后期随着网站功能增多网站开发也越来越复杂&#xff0c;以至于出现动态技 术&…...

0x01 GlassFish 任意文件读取漏洞复现

参考文章&#xff1a; 应用服务器glassfish任意文件读取漏洞 - SecPulse.COM | 安全脉搏 fofa 搜索使用该服务器的网站 网络空间测绘&#xff0c;网络空间安全搜索引擎&#xff0c;网络空间搜索引擎&#xff0c;安全态势感知 - FOFA网络空间测绘系统 "glassfish"&…...

接口测试中缓存处理策略

在接口测试中&#xff0c;缓存处理策略是一个关键环节&#xff0c;直接影响测试结果的准确性和可靠性。合理的缓存处理策略能够确保测试环境的一致性&#xff0c;避免因缓存数据导致的测试偏差。以下是接口测试中常见的缓存处理策略及其详细说明&#xff1a; 一、缓存处理的核…...

Prompt Tuning、P-Tuning、Prefix Tuning的区别

一、Prompt Tuning、P-Tuning、Prefix Tuning的区别 1. Prompt Tuning(提示调优) 核心思想:固定预训练模型参数,仅学习额外的连续提示向量(通常是嵌入层的一部分)。实现方式:在输入文本前添加可训练的连续向量(软提示),模型只更新这些提示参数。优势:参数量少(仅提…...

蓝桥杯 2024 15届国赛 A组 儿童节快乐

P10576 [蓝桥杯 2024 国 A] 儿童节快乐 题目描述 五彩斑斓的气球在蓝天下悠然飘荡&#xff0c;轻快的音乐在耳边持续回荡&#xff0c;小朋友们手牵着手一同畅快欢笑。在这样一片安乐祥和的氛围下&#xff0c;六一来了。 今天是六一儿童节&#xff0c;小蓝老师为了让大家在节…...

【项目实战】通过多模态+LangGraph实现PPT生成助手

PPT自动生成系统 基于LangGraph的PPT自动生成系统&#xff0c;可以将Markdown文档自动转换为PPT演示文稿。 功能特点 Markdown解析&#xff1a;自动解析Markdown文档结构PPT模板分析&#xff1a;分析PPT模板的布局和风格智能布局决策&#xff1a;匹配内容与合适的PPT布局自动…...

Mac下Android Studio扫描根目录卡死问题记录

环境信息 操作系统: macOS 15.5 (Apple M2芯片)Android Studio版本: Meerkat Feature Drop | 2024.3.2 Patch 1 (Build #AI-243.26053.27.2432.13536105, 2025年5月22日构建) 问题现象 在项目开发过程中&#xff0c;提示一个依赖外部头文件的cpp源文件需要同步&#xff0c;点…...

深度学习习题2

1.如果增加神经网络的宽度&#xff0c;精确度会增加到一个特定阈值后&#xff0c;便开始降低。造成这一现象的可能原因是什么&#xff1f; A、即使增加卷积核的数量&#xff0c;只有少部分的核会被用作预测 B、当卷积核数量增加时&#xff0c;神经网络的预测能力会降低 C、当卷…...

Java毕业设计:WML信息查询与后端信息发布系统开发

JAVAWML信息查询与后端信息发布系统实现 一、系统概述 本系统基于Java和WML(无线标记语言)技术开发&#xff0c;实现了移动设备上的信息查询与后端信息发布功能。系统采用B/S架构&#xff0c;服务器端使用Java Servlet处理请求&#xff0c;数据库采用MySQL存储信息&#xff0…...

关于easyexcel动态下拉选问题处理

前些日子突然碰到一个问题&#xff0c;说是客户的导入文件模版想支持部分导入内容的下拉选&#xff0c;于是我就找了easyexcel官网寻找解决方案&#xff0c;并没有找到合适的方案&#xff0c;没办法只能自己动手并分享出来&#xff0c;针对Java生成Excel下拉菜单时因选项过多导…...

CVPR2025重磅突破:AnomalyAny框架实现单样本生成逼真异常数据,破解视觉检测瓶颈!

本文介绍了一种名为AnomalyAny的创新框架&#xff0c;该方法利用Stable Diffusion的强大生成能力&#xff0c;仅需单个正常样本和文本描述&#xff0c;即可生成逼真且多样化的异常样本&#xff0c;有效解决了视觉异常检测中异常样本稀缺的难题&#xff0c;为工业质检、医疗影像…...

【LeetCode】算法详解#6 ---除自身以外数组的乘积

1.题目介绍 给定一个整数数组 nums&#xff0c;返回 数组 answer &#xff0c;其中 answer[i] 等于 nums 中除 nums[i] 之外其余各元素的乘积 。 题目数据 保证 数组 nums之中任意元素的全部前缀元素和后缀的乘积都在 32 位 整数范围内。 请 不要使用除法&#xff0c;且在 O…...