当前位置: 首页 > news >正文

基于卷积神经网络CNN的水果分类预测,卷积神经网络水果等级识别

目录
背影
卷积神经网络CNN的原理
卷积神经网络CNN的定义
卷积神经网络CNN的神经元
卷积神经网络CNN的激活函数
卷积神经网络CNN的传递函数
卷积神经网络CNN水果分类预测
基本结构
主要参数
MATALB代码
结果图
展望

背影

现在生活,为节能减排,减少电能损耗,高压智能输电网是电网发展的趋势,本文基于卷积神经网络输电线路三相故障识别。

卷积神经网络CNN的原理

卷积神经网络CNN的定义

在这里插入图片描述

卷积神经网络(Convolutional Neural Networks, CNN)是一类包含卷积计算且具有深度结构的前馈神经网络(Feedforward Neural Networks),是深度学习(deep learning)的代表算法之一 。卷积神经网络具有表征学习(representation learning)能力,能够按其阶层结构对输入信息进行平移不变分类(shift-invariant classification),因此也被称为“平移不变人工神经网络(Shift-Invariant Artificial Neural Networks, SIANN)”

卷积神经网络CNN的基本结构

基本BP算法包括信号的前向传播和误差的反向传播两个过程。即计算误差输出时按从输入到输出的方向进行,而调整权值和阈值则从输出到输入的方向进行。正向传播时,输入信号通过隐含层作用于输出节点,经过非线性变换,产生输出信号,若实际输出与期望输出不相符,则转入误差的反向传播过程。误差反传是将输出误差通过隐含层向输入层逐层反传,并将误差分摊给各层所有单元,以从各层获得的误差信号作为调整各单元权值的依据。通过调整输入节点与隐层节点的联接强度和隐层节点与输出节点的联接强度以及阈值,使误差沿梯度方向下降,经过反复学习训练,确定与最小误差相对应的网络参数(权值和阈值),训练即告停止。此时经过训练的神经网络即能对类似样本的输入信息,自行处理输出误差最小的经过非线形转换的信息。

输入层

卷积神经网络的输入层可以处理多维数据,常见地,一维卷积神经网络的输入层接收一维或二维数组,其中一维数组通常为时间或频谱采样;二维数组可能包含多个通道;二维卷积神经网络的输入层接收二维或三维数组;三维卷积神经网络的输入层接收四维数组 。由于卷积神经网络在计算机视觉领域应用较广,因此许多研究在介绍其结构时预先假设了三维输入数据,即平面上的二维像素点和RGB通道。
与其它神经网络算法类似,由于使用梯度下降算法进行学习,卷积神经网络的输入特征需要进行标准化处理。具体地,在将学习数据输入卷积神经网络前,需在通道或时间/频率维对输入数据进行归一化,若输入数据为像素,也可将分布于 的原始像素值归一化至 区间 。输入特征的标准化有利于提升卷积神经网络的学习效率和表现。

隐含层

卷积神经网络的隐含层包含卷积层、池化层和全连接层3类常见构筑,在一些更为现代的算法中可能有Inception模块、残差块(residual block)等复杂构筑。在常见构筑中,卷积层和池化层为卷积神经网络特有。卷积层中的卷积核包含权重系数,而池化层不包含权重系数,因此在文献中,池化层可能不被认为是独立的层。以LeNet-5为例,3类常见构筑在隐含层中的顺序通常为:输入-卷积层-池化层-全连接层-输出。

卷积层

卷积层的功能是对输入数据进行特征提取,其内部包含多个卷积核,组成卷积核的每个元素都对应一个权重系数和一个偏差量(bias vector),类似于一个前馈神经网络的神经元(neuron)。卷积层内每个神经元都与前一层中位置接近的区域的多个神经元相连,区域的大小取决于卷积核的大小,在文献中被称为“感受野(receptive field)”,其含义可类比视觉皮层细胞的感受野 。卷积核在工作时,会有规律地扫过输入特征,在感受野内对输入特征做矩阵元素乘法求和并叠加偏差量

池化层(pooling layer)
在卷积层进行特征提取后,输出的特征图会被传递至池化层进行特征选择和信息过滤。池化层包含预设定的池化函数,其功能是将特征图中单个点的结果替换为其相邻区域的特征图统计量。池化层选取池化区域与卷积核扫描特征图步骤相同,由池化大小、步长和填充控制

全连接层(fully-connected layer)
卷积神经网络中的全连接层等价于传统前馈神经网络中的隐含层。全连接层位于卷积神经网络隐含层的最后部分,并只向其它全连接层传递信号。特征图在全连接层中会失去空间拓扑结构,被展开为向量并通过激励函数

输出层
卷积神经网络中输出层的上游通常是全连接层,因此其结构和工作原理与传统前馈神经网络中的输出层相同。对于图像分类问题,输出层使用逻辑函数或归一化指数函数(softmax function)输出分类标签 。在物体识别(object detection)问题中,输出层可设计为输出物体的中心坐标、大小和分类 。在图像语义分割中,输出层直接输出每个像素的分类结果

基于卷积神经网络CNN的水果分类识别

基本模型

创建经典的Lenet,三层神经网络,

神经网络参数

卷积核33,池化层22,学习率0.5,训练批次10,最大迭代次数100

数据

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

MATLAB编程代码

clear
clc
close all

%%
clc;clear;close all; format compact
%% 加载数据
load tz_datasets
data=tz_image;
%%
input1=double(data);%转为double类型文件
output1=[ones(1,16) 2ones(1,16) ];%16个好橘子,作为标签1,剩下的怀橘子对应标签2
%%
[PCALoadings,PCAScores,PCAVar] = pca(input1);%利用PCA进行降维
input=PCAScores(:,1:16);%利用pca进行降维至16维,用于构建一个4
4的矩阵输入(CNN的输入是图片)
%%
%把输出从1维变成2维 好橘子为第1类,对应标签[1 0];坏橘子为第二类,对应标签[0 1]
for i=1:size(output1,2)
output(output1(i),i)=1;
end
%%
for i=1:size(input,1)
x=reshape(input(i,:),4,4);
input_x(:,:,i)=x;
end
%%
[m n]=sort(rand(1,32));
train_x=input_x(:,:,n(1:16));
train_y=output(:,n(1:16));
test_x=input_x(:,:,n(17:end));
test_y=output(:,n(17:end));

%% 创建一个经典Lenet(卷积神经网络中代表模型,如lenet、alexnet,vgg16,resnet等)
rand(‘state’,0)
cnn.layers = {
%第一层
struct(‘type’, ‘i’) %输入层
%第二层
struct(‘type’, ‘c’, ‘outputmaps’, 10, ‘kernelsize’, 3) %卷积层–相当于隐含层节点为10,每次采用一个33的卷积核进行抽样卷积
% 卷积后的图像大小为(4-3+1)
(4-3+1)=22
struct(‘type’, ‘s’, ‘scale’, 2) %池化层 利用一个2
2的池化层把卷积后的图像降维原来的一半
% (2/2)(2/2)=11
};
%% 训练 CNN
% 参数设置
opts.alpha = 1;% 学习率
opts.batchsize = 2; %批训练大小 batchsize整数倍必须是总训练样本大小,选择更小的批数据 这样计算的更快,电脑所需内存也会大幅减小
opts.numepochs = 100;%学习迭代次数

cnn = cnnsetup(cnn, train_x, train_y);
cnn = cnntrain(cnn, train_x, train_y, opts);
% % 训练误差曲线
figure; plot(cnn.rL);xlabel(‘训练次数次数’);ylabel(‘误差’)
title(‘训练误差曲线’)
save net_cnn cnn PCALoadings
%% 测试模型有效性
% load net_cnn
% 训练集
[er1, bad1 , a1, h1] = cnntest(cnn, train_x, train_y);
disp(‘展示CNN训练集精度’)
train_acc=1-er1
figure
stem(h1);hold on
plot(a1,‘‘)
legend(‘预测输出’,‘期望输出’)
xlabel(‘样本数/个’)
ylabel(‘标签类别’)
title(‘CNN网络输出与期望输出对比–训练集’)
% 测试集
[er2, bad2 , a2, h2] = cnntest(cnn, test_x, test_y);
disp(‘展示CNN测试集精度’)
test_acc=1-er2
figure
stem(h2);hold on
plot(a2,’
’)
legend(‘预测输出’,‘期望输出’)
xlabel(‘样本数/个’)
ylabel(‘标签类别’)
title(‘CNN网络输出与期望输出对比–测试集’)
function net = cnnbp(net, y)
n = numel(net.layers);

%   error
net.e = net.o - y;
%  loss function
net.L = 1/2* sum(net.e(:) .^ 2) / size(net.e, 2);%%  backprop deltas
net.od = net.e .* (net.o .* (1 - net.o));   %  output delta
net.fvd = (net.ffW' * net.od);              %  feature vector delta
if strcmp(net.layers{n}.type, 'c')         %  only conv layers has sigm functionnet.fvd = net.fvd .* (net.fv .* (1 - net.fv));
end%  reshape feature vector deltas into output map style
sa = size(net.layers{n}.a{1});
fvnum = sa(1) * sa(2);
for j = 1 : numel(net.layers{n}.a)net.layers{n}.d{j} = reshape(net.fvd(((j - 1) * fvnum + 1) : j * fvnum, :), sa(1), sa(2), sa(3));
endfor l = (n - 1) : -1 : 1if strcmp(net.layers{l}.type, 'c')for j = 1 : numel(net.layers{l}.a)net.layers{l}.d{j} = net.layers{l}.a{j} .* (1 - net.layers{l}.a{j}) .* (expand(net.layers{l + 1}.d{j}, [net.layers{l + 1}.scale net.layers{l + 1}.scale 1]) / net.layers{l + 1}.scale ^ 2);endelseif strcmp(net.layers{l}.type, 's')for i = 1 : numel(net.layers{l}.a)z = zeros(size(net.layers{l}.a{1}));for j = 1 : numel(net.layers{l + 1}.a)z = z + convn(net.layers{l + 1}.d{j}, rot180(net.layers{l + 1}.k{i}{j}), 'full');endnet.layers{l}.d{i} = z;endend
end%%  calc gradients
for l = 2 : nif strcmp(net.layers{l}.type, 'c')for j = 1 : numel(net.layers{l}.a)for i = 1 : numel(net.layers{l - 1}.a)net.layers{l}.dk{i}{j} = convn(flipall(net.layers{l - 1}.a{i}), net.layers{l}.d{j}, 'valid') / size(net.layers{l}.d{j}, 3);endnet.layers{l}.db{j} = sum(net.layers{l}.d{j}(:)) / size(net.layers{l}.d{j}, 3);endend
end
net.dffW = net.od * (net.fv)' / size(net.od, 2);
net.dffb = mean(net.od, 2);function X = rot180(X)X = flipdim(flipdim(X, 1), 2);
end

end

效果图

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

结果分析

从效果图上看,CNN卷积神经网络水果分类准确率可达到百分子95以上。

展望

CNN是一种深度信念网络,优点在可以处理大输入数据,能训练中自动降维,训练的过程就是降维的过程,缺点是拟合逼近能力不强,收敛面比较平滑,基于这些,可以和其他拟合能力强的神经网络结合,比如极限学习机,RBF等,结合后的神经网络,即可处理大输入数据,又具有无限逼近的能力,有需要扩展的欢迎扫描文章下面的二维码

相关文章:

基于卷积神经网络CNN的水果分类预测,卷积神经网络水果等级识别

目录 背影 卷积神经网络CNN的原理 卷积神经网络CNN的定义 卷积神经网络CNN的神经元 卷积神经网络CNN的激活函数 卷积神经网络CNN的传递函数 卷积神经网络CNN水果分类预测 基本结构 主要参数 MATALB代码 结果图 展望 背影 现在生活,为节能减排,减少电能…...

Spring Boot 框架总结

Spring Boot 框架总结 1. springboot的引言 Spring Boot是由Pivotal团队提供的全新框架,其设计目的是用来简化Spring应用的 初始搭建以及开发过程。该框架使用了特定的方式来进行配置,从而使开发人员不 再需要定义样板化的配置。通过这种方式&#xff0…...

【数据结构】第五站:带头双向循环链表

目录 一、链表的八种结构 二、带头双向循环链表的实现 1.链表的定义 2.链表的接口定义 3.接口的具体实现 三、带头双向循环链表的完整代码 四、顺序表和链表的区别 一、链表的八种结构 我们已经知道链表可以有以下三种分法 而这三种结构又可以排列组合,形成八…...

Springboot生成二维码

Springboot生成二维码整合 我们使用两种方式,去生成二维码,但是其实,二维码的生成基础,都是zxing包,这是Google开源的一个包,第一种是使用原始的zxing方式去实现,第二种是使用hutool来实现&…...

“独裁者”何小鹏,再造小鹏汽车

文丨智能相对论 作者丨沈浪 如果没有何小鹏,小鹏汽车将失去灵魂。 2014年,夏珩、何涛等人在广州组建小鹏汽车(当时还叫“橙子汽车”),何小鹏还只是股权投资人。 夏珩、何涛原任职于广汽,负责新能源汽车…...

数据结构 | 泛型 | 擦除机制| 泛型的上界

目录 ​编辑 1.泛型 1.1Object类引出泛型概念 2.泛型语法 2.1泛型编写代码 3.泛型的机制 3.1擦除机制 4.泛型的上界 4.1泛型上界的语法 4.2泛型上界的使用 5.泛型方法 5.1泛型方法语法 5.2泛型方法的使用 1.泛型 一般的类和方法中,只能使用具体的代码…...

C++拷贝构造函数(复制构造函数)详解

拷贝和复制是一个意思,对应的英文单词都是copy。对于计算机来说,拷贝是指用一份原有的、已经存在的数据创建出一份新的数据,最终的结果是多了一份相同的数据。例如,将 Word 文档拷贝到U盘去复印店打印,将 D 盘的图片拷…...

python学习——多线程

python学习——多线程概念python中线程的开发线程的启动线程的退出和传参threading的属性和方法threading实例的属性和方法多线程daemon线程和non-demone线程daemon线程的应用场景线程的jointhreading.local类线程的延迟执行:Timer线程同步Event 事件Lock ——锁加锁…...

SAP 系统中过账码or记账码

SAP中过账码和记账码是指同一个事物。 在实际业务中,记账码就是只有“借”和“贷”, 而SAP中Posting Code肩负着更多的任务: 1)界定科目类型, 2)借贷方向, 3)凭证输入时画面上的字…...

【FreeRTOS(一)】FreeRTOS新手入门——初识FreeRTOS

初识FreeRTOS一、实时操作系统概述1、概念2、RTOS的必要性3、RTOS与裸机的区别4、FreeRTOS的特点二、FreeRTOS的架构三、FreeRTOS的代码架构一、实时操作系统概述 1、概念 RTOS:根据各个任务的要求,进行资源(包括存储器、外设等&#xff09…...

Python中 __init__的通俗解释是什么?

__init__是Python中的一个特殊方法,用于在创建对象时初始化对象的属性。通俗来讲,它就像是一个构造函数,当我们创建一个类的实例时,__init__方法会被自动调用,用于初始化对象的属性。 举个例子,如果我们定义…...

网友真实面试总结出的自动化测试面试题库

目录 常规问题 手工测试部 自动化测试 自动化测试面试题2:selenium篇 常规问题 1、如何快速深入的了解移动互联网领域的应用 (答案:看http协议 restful api知识 json加1分) 2、对xx应用自己会花多久可以在业务上从入门到精通&…...

2023 年最佳 C++ IDE

文章目录前言1. Visual Studio2. Code::Blocks3. CLion4. Eclipse CDT(C/C 开发工具)5. CodeLite6. Apache NetBeans7. Qt Creator8. Dev C9. C Builder10. Xcode11. GNAT Programming Studio12. Kite总结前言 要跟踪极佳 IDE(集成开发环境&…...

在Ubuntu上使用VSCode编译MySQL Connector/C连接库

首先下载并解压MySQL Connector/C源码,然后执行以下步骤: 1、安装MySQL Connector/C依赖:在终端中输入以下命令来安装MySQL Connector/C的依赖项: sudo apt-get install build-essential cmake 2、下载并解压MySQL Connector/C源…...

单声道数字音频放大器AD87589

AD87589是一种集成音频系统解决方案,嵌入数字音频处理、功率级放大器和立体声2Vrms线路驱动器。 AD87589具有可编程转换速率控制的输出缓冲器,可直接驱动一个(单声道)或两个(立体声)扬声器。此外&#xff0…...

网络的UDP协议和TCP协议

协议:数据在网络中的传输规则,常见的协议有 UDP协议和TCP协议 协议:计算机网络中,连接和通信的规则被称为网络通信协议 UDP协议:用户数据报协议,是面向无连接通信协议,速度快,有大小…...

【JaveEE】多线程之阻塞队列(BlockingQueue)

目录 1.了解阻塞队列 2.生产者消费者模型又是什么? 2.1生产者消费者模型的优点 2.1.1降低服务器与服务器之间耦合度 2.1.2“削峰填谷”平衡消费者和生产的处理能力 3.标准库中的阻塞队列(BlockingQueue) 3.1基于标准库(Bloc…...

分布式ELK日志监控系统环境搭建

文章目录1.1为什么需要监控项目日志1.2ELK日志监控系统介绍1.3ELK的工作流程1.4ELK环境搭建1.4.1Elasticsearch的安装1.4.2Kibana的安装1.4.3Logstash的安装1.4.4数据源配置1.4.5日志监测测试1.4.6日志数据可视化展示1.1为什么需要监控项目日志 项目日志是记录项目运行过程中产…...

【数据结构刷题集】链表经典习题

😽PREFACE🎁欢迎各位→点赞👍 收藏⭐ 评论📝📢系列专栏:数据结构刷题集🔊本专栏涉及到题目是数据结构专栏的补充与应用,只更新相关题目,旨在帮助提高代码熟练度&#x…...

JavaSE(3.27) 异常

学习不要眼高手低,学习是一点点积累的。即使你现在很菜,坚持学一个学期不会差的!只要花时间学习,每天都是进步的,这些进步可能你现在看不到,但是不要小瞧了积累效应,30天,60天&#…...

【看门狗】我说的是定时器不是狗啊

单片机在运行中死机了,你或许只能按2下电源键(重启)或1下复位键。 这里简单说一下重启和复位: 从RESET引脚复位,只有MCU复位。而外设看情况,有的可能会有MCU同步复位或者重新初始化。也有可能一些保持复位…...

24万字智慧城市顶层设计及智慧应用解决方案

本资料来源公开网络,仅供个人学习,请勿商用,如有侵权请联系删除。部分资料内容: 4.8 机房消防系统 4.8.1消防系统概况 根据本工程机房消防系统的特殊要求,整个消防系统由火灾报警系统、消防联动系统和气体灭火系统三部…...

跨境电商卖家工具——跨境卫士内容介绍

一、简介 跨境卫士是一款集合多种跨境电商工具的综合软件,由知名跨境电商服务商跨境通开发。跨境卫士可以帮助卖家完成海外物流管理、订单处理、报关报税、市场营销等多项任务,同时还提供数据分析、客户服务、运营管理等一系列支持功能,方便卖…...

Redis 常用基本命令

关于 redis 的常用基本命令 目录 关于 redis 的常用基本命令 1. 关于 key 的操作 2. HyperLogLog 求近似基数 3. 排序相关命令 4. Limit 限制查询 1. 关于 key 的操作 判断某个 key 是否存在 # 格式: exists key exists name# 存在name 返回1 # 不存在name 返回0 查找或…...

【Leetcode】队列的性质与应用

文章目录225. 用队列实现栈示例:提示:分析:题解:622. 设计循环队列示例:提示:分析:题解:225. 用队列实现栈 请你仅使用两个队列实现一个后入先出(LIFO)的栈&…...

开启新航路,拓尔思发力AIGC市场 | 爱分析调研

2022年,随着AI聊天机器人GhatGPT在世界范围内持续火爆,极具创意、表现力、个性化且能快速迭代的AIGC技术成功破圈,成为全民讨论热点。 AIGC是指在确定主题下,由算法模型自动生成内容,包括单模态内容如文本、图像、音频…...

RK3568平台开发系列讲解(调试篇)Linux 内核的日志打印

🚀返回专栏总目录 文章目录 一、dmseg 命令二、查看 kmsg 文件三、调整内核打印等级沉淀、分享、成长,让自己和他人都能有所收获!😄 📢本篇将 Linux 内核的日志打印进行梳理。 一、dmseg 命令 在终端使用 dmseg 命令可以获取内核打印信息,该命令的具体使用方法如下所…...

hadoop之MapReduce框架原理

目录 MapReduce框架的简单运行机制: Mapper阶段: InputFormat数据输入: 切片与MapTask并行度决定机制: job提交过程源码解析: 切片逻辑: 1)FileInputFormat实现类 进行虚拟存储 &#x…...

JavaEE简单示例——SpringMVC的简单数据绑定

简单介绍: 在前面我们介绍过如何将我们自己创建的类变成一个servlet来处理用户发送的请求,但是在大多数的时候,我们在请求 的时候会携带一些参数,而我们现在就开始介绍我们如何在Java类中获取我们前端请求中携带的参数。首先&…...

耗时的同步请求自动转异步请求

耗时的同步请求自动转异步请求问题描述问题处理代码实现问题描述 现在在项目中碰到一个情况,导出数据到excel,在数据量比较下的时候直接下载,在数据量比较大时保存到服务的文件列表,后续再供用户下载。 也就是需要避免前端因后端…...

怎么给喜欢的人做网站/网络推广外包想手机蛙软件

2019独角兽企业重金招聘Python工程师标准>>> 8.10 shell特殊符号cut命令 8.11 sort_wc_uniq命令 8.12 tee_tr_split命令 8.13 shell特殊符号下 相关测验题目:http://ask.apelearn.com/question/5437 扩展 1. source exec 区别 http://alsww.blog.51cto.c…...

房屋装修设计app/广州seo团队

目录 常见的HTML语义化标签大全 点击input,value值消失 前端开发知识点 AMD和CMD的区别: 工作中常见问题汇总及解决方案 怎么设置网页内容不能被复制?怎么解决? 常见的HTML语义化标签大全 参考: 整理 HTML5 新…...

wordpress背景图美化/百度热搜榜单

windows是个多用户多任务的操作系统,支持多个程序同时运行,如果你的程序不想让用户同时运行一个以上, 那应该怎样做呢? 本文将介绍避免用户同时运行多个程序的例子。 需要用到的函数CreateMutex ,CreateMutex 函数是…...

做查询网站有哪些/seo网站系统

1. 题目 原题链接 给你两个有序整数数组 nums1 和 nums2,请你将 nums2 合并到 nums1 中,使 nums1 成为一个有序数组。 初始化 nums1 和 nums2 的元素数量分别为 m 和 n 。你可以假设 nums1 的空间大小等于 m n,这样它就有足够的空间保存来…...

做网站所用的工具/安庆seo

2019独角兽企业重金招聘Python工程师标准>>> 下载Stimulsoft Reports.Ultimate最新版本 Stimulsoft专题页:全面汇集Stimulsoft视频教程、版本更新、使用教程、应用案例和相关开发资源等。 执行以下步骤以创建子报表: 运行设计器连接数据&…...

wordpress所有数据迁移/推广计划怎么做推广是什么

单一职责原则是面向对象原则五大原则中最简单,也是最重要的一个原则, 他的字面定义如下: 单一职责原则(Single Responsibility Principle, SRP): 一个类只负责一个功能领域中的相应职责,或者可以定义为:就一个类而言&a…...