当前位置: 首页 > news >正文

论文阅读和分析:Hybrid Mathematical Symbol Recognition using Support Vector Machines

HMER论文系列
1、论文阅读和分析:When Counting Meets HMER Counting-Aware Network for HMER_KPer_Yang的博客-CSDN博客
2、论文阅读和分析:Syntax-Aware Network for Handwritten Mathematical Expression Recognition_KPer_Yang的博客-CSDN博客
3、论文阅读和分析:A Tree-Structured Decoder for Image-to-Markup Generation_KPer_Yang的博客-CSDN博客
4、 论文阅读和分析:Watch, attend and parse An end-to-end neural network based approach to HMER_KPer_Yang的博客-CSDN博客
5、 论文阅读和分析:Multi-Scale Attention with Dense Encoder for Handwritten Mathematical Expression Recognition_KPer_Yang的博客-CSDN博客
6、 论文阅读和分析:Mathematical formula recognition using graph grammar_KPer_Yang的博客-CSDN博客
7、 论文阅读和分析:Hybrid Mathematical Symbol Recognition using Support Vector Machines_KPer_Yang的博客-CSDN博客
8、论文阅读和分析:HMM-BASED HANDWRITTEN SYMBOL RECOGNITION USING ON-LINE AND OFF-LINE FEATURES_KPer_Yang的博客-CSDN博客

主要贡献:

1、提出了一种基于支持向量机的混合识别系统,该系统同时使用在线和离线信息进行分类。

2、并行运行的两个基于支持向量机的多类分类器的概率输出通过加权和进行组合。实验结果表明,赋予在线信息稍高的权重会产生更好的结果。混合系统在单独使用时的整体错误率低于在线和离线识别系统。

复习SVM

下面所说的,在libsvm都有实现

SVMs基于两个观点:VC维度和最小化结构风险。

在VC理论中,最常用的概念为VC维(VC dimension)。VC维度(或Vapnik-Chervonenkis维度)是衡量可以通过统计分类算法学习的函数空间的容量(复杂度,表现力,丰富度或灵活性)的度量。它被定义为算法可以破碎(shatter)的最大点集的基数,在这里破碎(shatter)意为若对于一个假设空间H,如果存在m个数据样本能够被假设空间H中的函数按所有可能的2^h种形式分开,则称假设空间H能够把m个数据样本破碎(shatter)。在二维平面上的简单理解就是可以使得线性划分数据集所有点类别的最小直线数目。

SVMs遇到线性不可分的情况下,理论上在一个更高的维度空间可以线性可分,相当于给一个非线性决策平面在原来的特征空间。可以表示成:
f(x)=∑iαiyiK(x,xi)+bf(x)=\sum_i\alpha_iy_i K(x,x_i)+b f(x)=iαiyiK(x,xi)+b

yiy_iyi:label;

xix_ixi:训练样本;

xxx:待分类样本;

K(x,xi)=ϕ(x)ϕ(xi)K(x,x_i)=\phi(x) \phi(x_i)K(x,xi)=ϕ(x)ϕ(xi):核函数:
K(a,b)=exp⁡(−γ∣∣a−b∣∣2),γ>0(radial basis fns)K(a,b)=(γ(a⋅b)+r)d,γ>0(polynomial)K(a,b)=tanh⁡(γ(a⋅b)+r)(sigmoid)\begin{array}{l} K(a,b)=\exp(-\gamma||a-b||^2),\gamma>0\text{(radial basis fns)}\\ K(a,b)=(\gamma(a\cdot b)+r)^d,\gamma>0\textrm{(polynomial)}\\ K(a,b)=\tanh(\gamma(a\cdot b)+r)\textrm{(sigmoid)} \end{array} K(a,b)=exp(γ∣∣ab2),γ>0(radial basis fns)K(a,b)=(γ(ab)+r)d,γ>0(polynomial)K(a,b)=tanh(γ(ab)+r)(sigmoid)

一般而言,SVMs用于二分类任务,多分类任务用DAG and one-against-one作为多分类的实现。

同时,要让SVMs输出后验概率,需要使用sigmoid函数:
p(y=1∣f(x))=11+exp⁡(Af(x)+B)p(y=1|f(x))=\dfrac{1}{1+\exp(Af(x)+B)} p(y=1∣f(x))=1+exp(Af(x)+B)1

f(x)f(x)f(x):SVM的输出;

A和B:可以从负的log-likelihood 函数在训练数据得到;

架构

使用在线特征和离线特征,通过两个不同的SVM分类器,得到每个类别的概率,联合求出总的概率,得到结果。

联合:
P(Ci∣X)=αP(Ci∣X,ONF)+β(Ci∣X,OFF)P(C_i|X)=αP(C_i|X,ONF)+β(C_i|X,OFF) P(CiX)=αP(CiX,ONF)+β(CiX,OFF)

α+β=1\alpha + \beta = 1α+β=1

在这里插入图片描述

在线特征向量

预处理:

1、smoothing:使用中心平滑去平滑墨水的笔迹;
xi=0.25xi−1+0.5xi+0.25xi+1yi=0.25yi−1+0.5yi+0.25yi+1\begin{array}{rcl}x_i&=&0.25x_{i-1}+0.5x_i+0.25x_{i+1}\\ y_i&=&0.25y_{i−1}+0.5y_i+0.25y_{i+1}\end{array} xiyi==0.25xi1+0.5xi+0.25xi+10.25yi1+0.5yi+0.25yi+1
2、Filling intermediate points:在连续的点之间填充内部点,这样对齐空间,没有对齐时间,因为发现空间对齐比时间对齐更有用。因此,在重新采样时,我们将笔画上的点放置在相等的距离上。

3、resample重采样:每个笔画选择每N/11thN/11^{th}N/11th的点,N是总的点数;

4、size normalization尺度归一化:每个stroke使用1/max(h,w)1/max(h,w)1/max(h,w)进行归一化;

提取特征:

发现坐标和角度信息是最有区分度的特征,增加图形特征例如相关长度,错误率降低很小但是特征向量更多;

计算重心:
∑i(xi/N),∑i(yi/N),\sum_i(x_i/N),\sum_i(y_i/N), i(xi/N),i(yi/N),
转过的角度:

在这里插入图片描述

因此得到的特征包括:

特征:
stroke笔画的每个点的坐标
line segments的sines和cosines值
line segments和符号重心的sines和cosines值

离线特征向量

1、离线特征是将stroke转换成图片,存储样本文件在InkML格式,这些文件加载使用black ink在white背景上,使用Microsofts Tablet PC SDK.

2、转换到bitmap后,进行尺度缩放:15/max(w,h)15/max(w,h)15/max(w,h)

3、使用high-quality bilinear interpolation filter,填补边缘得到bitmap 15*15大小。

在这里插入图片描述

提取的特征:

特征:
(I1,I2,...,IN)(I_1,I_2,...,I_N)(I1,I2,...,IN):灰度强度像素点的值N=w∗hN=w*hN=wh

参考:

《Hybrid Mathematical Symbol Recognition using Support Vector Machines》
VC维度 | 机器之心 (jiqizhixin.com)

相关文章:

论文阅读和分析:Hybrid Mathematical Symbol Recognition using Support Vector Machines

HMER论文系列 1、论文阅读和分析:When Counting Meets HMER Counting-Aware Network for HMER_KPer_Yang的博客-CSDN博客 2、论文阅读和分析:Syntax-Aware Network for Handwritten Mathematical Expression Recognition_KPer_Yang的博客-CSDN博客 3、论…...

05期:面向业务的消息服务落地实践

这里记录的是学习分享内容,文章维护在 Github:studeyang/leanrning-share。 我们在上次分享中聊到了领域驱动设计和微服务,在 DDD 中有一个术语叫做领域事件,例如订单模型中的订单已创建、商品已发货。领域事件会触发下一步的业务…...

代码随想录|day26|回溯算法part03● 39. 组合总和● 40.组合总和II● 131.分割回文串

今天的练习基本就是回溯法组合问题,这一节只要看labuladong即可。 组合问题: 39. 组合总和---------------------形式三,元素无重可复选 链接:代码随想录 一次对,同样在进入下次循环时,注意startindex是从j…...

linux-文件切割-splitcsplit

目录 按大小切割-split 按行数切割-split 按内容切割-csplit 按大小切割-split split -b 10k example.conf -d -a 3 output.file example.conf 被切割的文件 -b 指定切割大小 -d 数字后缀 -a 后缀长度,默认2 output.file …...

USB键盘实现——设备限定描述符(五)

文章目录设备限定描述符仓库地址设备限定描述符介绍设备限定描述符结构体定义获取设备限定描述符的请求标准设备请求USB 控制端点收到的数据设备限定描述符返回附 STM32 枚举日志设备限定描述符 设备限定描述符内容解析和 HID鼠标 一致。 仓库地址 仓库地址 设备限定描述符…...

【C++】map和set(一文拿捏,包教包会)

目录 1.关联式容器和序列式容器 2.键值对 3.树型结构的关联式容器 4.set 5.multiset 6.map 7.multimap 1.关联式容器和序列式容器 set:关联式容器——数据之间关联紧密 线性表(vector,list,deque):序…...

爬虫Day2 正则表达式

爬虫Day2 正则表达式 一、正则表达式 1. 正则的作用 正则表达式是一种可以让复杂的字符串变得简单的工具。 写正则表达式就是用正则符号来描述字符串规则 # 案例1:判断一个字符串是否是一个合法的手机号码 tel 23297293329# 方法1:不用正则 if len…...

LeetCode-0324~28

leetCode1032 思路:想的是维护一个后缀数组,然后用Set去判断一下,结果超时了,去看题解,好家伙AC自动机,没办法,开始学。 正确题解: class ACNode{public ACNode[] children;publi…...

Vue2自己封装的基础组件库或基于Element-ui再次封装的基础组件库,如何发布到npm并使用(支持全局或按需引入使用),超详细

最终效果如下 一、先创建vue2项目 1、 可以用vue-cli自己来创建;也可以直接使用我开源常规的vue2后台管理系统模板 以下我以 wocwin-admin-vue2 项目为例 修改目录结构,最终如下 2、修改vue.config.js文件 module.exports { // 修改 src 目录 为 exam…...

【开发】中间件——MongoDB

MongoDB是一个基于分布式(海量数据存储)文件存储的数据库。 MongoDB是一个介于关系数据库和非关系数据库之间的产品,是非关系数据库当中功能最丰富,最像关系数据库的,它支持的数据结构非常松散,是类似json…...

C++进阶 — 【C++11】

目录 一、 C11简介 二、 统一的列表初始化 1.{}初始化 2. initializer_list 三、声明 1. auto 2. decltype 3. nullptr 四、范围for循环 五、STL中一些变化 1. 提供了一些新容器 2.容器中增加了一些新方法 六、右值引用和移动语义 1. 左值引用和右…...

Mac安装Homebrew

1.前往Homebrew官网,复制官网的安装命令 https://brew.sh/ /bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)"安装结束后,记得仔细看脚本执行最后的提示,需要我们复制两行命令执…...

【详细】利用VS2019创建Web项目,并发送到IIS,以及IIS与ASP.NET配置

一、打开VS2019选择创建新项目【最好以管理员身份运行VS2019,后面发布网站时需要以管理员身份,避免后面还要重启,可以一开始就以管理员身份运行】 二、选择语言为C#,然后选择“ASP.NET Web应用程序(.NET Framework&…...

FasterRcnn,Yolov2,Yolov3中的Label Assignment机制 和 ATSS

一般把anchor到gt之间如何匹配的方法称为label assignment,也就是给预设的anchor打上正负样本等标签,方便我们后续进一步回归。 其实RPN和Yolo有各自的label assignment方法, 在Faster rcnn,yolo,RetinaNet中&#xf…...

使用Java技术WebSocket创建聊天、群聊,实现好友列表,添加好友,好友分组,聊天记录查询功能。

文章目录 引入依赖主要代码配置WebSocket创建通讯完整后台项目代码下载WebSocket的由来: 之前只有一个http协议,http协议是请求响应,存在缺陷,就是请求只能由客户端发起,然后请求到服务器,服务器做响应,但是如果服务器状态做了改变,客户端并不能即使的更新,之前的是按照…...

【Redis07】Redis基础:Bitmap 与 HyperLogLog 相关操作

Redis基础学习:Bitmap 与 HyperLogLog 相关操作继续进行 Redis 基础部分的学习,今天我们学习的是两种另外的数据类型。说是数据类型,但其实它们实际上使用的都是 String 类型做为底层基础,只不过是在存储的时候进行了一些特殊的操…...

华为路由器 VRRP主备配置

组网需求 如下图所示,PC1通过SW1双归属到R1和R2。为保证用户的各种业务在网络传输中不中断,需在R1和R2上配置VRRP主备备份功能。 正常情况下,主机以R1为默认网关接入Internet,当R1故障时,R2接替R1作为网关继续进行工作…...

docker容器安装ES

1.拉取镜像 docker pull elasticsearch:6.5.42.修改别名 docker tag [容器ID] es65:6.5.42.启动应用 docker run -it -d -p 9200:9200 -p 9300:9300 --name es -e ES_JAVA_OPTS"-Xms128m -Xmx128m" es65:6.5.43.拷贝配置文件到宿主机 docker cp es:/usr/share/ela…...

Python Module — prompt_toolkit CLI 库

目录 文章目录目录prompt_toolkit示例化历史记录热键自动补全多行输入Python 代码高亮自定义样式prompt_toolkit prompt_toolkit 是一个用于构建 CLI 应用程序的 Python 库,可以让我们轻松地构建强大的交互式命令行应用程序。 自动补全:当用户输入命令…...

springboot mybatis-plus 调用 sqlserver 的 存储过程 返回值问题

问题: 在使用 mybatis-plus 调用sqlserver 存储过程 没有返回值 经过资料查找 注意点 此处使用Map传参,原因在于存储过程的返回值,通常在参数定义中实现,如In 入参、out 出参。 这样当执行后有结果返回时,则可以将结…...

【0180】PG内核读取pg_hba.conf并创建HbaLine记录(1)

文章目录 1. pg_hba.conf文件是什么?2. postmaster何时读取pg_hba.conf?2.1 pg内核使用pg_hba.conf完成客户端认证的原理2.2 读取pg_hba.conf的几个模块3. pg内核读取pg_hba.conf过程3.1 VFD机制获取文件描述符3.2 根据fd读取文件内容相关阅读: 【0178】DBeaver、pgAdmin I…...

【原型设计工具】​​上海道宁为您提供Justinmind,助力您在几分钟内形成原型,并现场测试,无需编写任何代码

Justinmind是用于 Web和应用程序的原型制作工具 在几分钟内形成原型 并在现场进行测试 无需编写任何代码 单击一下即可轻松在线获取您的设计 并与整个团队共享 享受高效的沟通和快速反馈 以实现持续改进和利益相关者的支持 开发商介绍 JustinMind是由西班牙JustinMind公…...

计算机网络中---HDLP协议和PPP协议

目录 HDLC协议PPP协议HDLC协议和PPP协议HDLC协议 HDLC协议【高级数据链路控制协议】是一种数据链路层协议,用于在两个节点之间传输数据。以下是HDLC协议的重点知识: HDLC协议定义了一种标准的帧格式,包括起始标志、地址字段、控制字段、信息字段、校验字段和结束标志。HDLC…...

k8s之节点kubelet预留资源配置

k8s之kubelet预留资源配置1 前言2 预留资源Kube-reservedSystem-reservedEviction Thresholds实施节点可分配约束3 Pod优先级4 生产应用配置文件重启kubelet服务查看节点资源1 前言 最近k8s在使用过程中遇到这样一个问题 由于Pod没有对内存及CPU进行限制,导致Pod在…...

机器学习笔记之前馈神经网络(四)反向传播算法[数学推导过程]

机器学习笔记之前馈神经网络——反向传播算法[数学推导过程]引言回顾:感知机算法非线性问题与多层感知机反向传播算法(BackPropagation,BP\text{BackPropagation,BP}BackPropagation,BP)场景构建求解各权重更新量图示描述反向传播过程总结引言 上一节介绍了M-P\tex…...

vscode+elementui校园跑腿系统 nodejs+vue

本系统从用户的角度出发,结合当前的校园环境而开发的,在开发语言上是使用的Java语言,在框架上我们是使用的Vue框架,数据库方面使用的是MySQL数据库,开发工具为IDEA。 基于Vue的校园跑腿管理系统中的管理员配送用户都可…...

[蓝桥杯单片机8]定时器的简单应用

1、本实验内容 利用51单片机的定时/计数器T0的模式1实现间隔定时,每隔1秒L1指示灯闪烁一下,也就是点亮0.5秒,熄灭0.5秒;每隔2秒L8指示灯闪烁一下,即点亮1秒,熄灭1秒。2、基础知识 定时/计数器,是…...

node-HTTP协议

文章目录一. 概念二. 请求报文的组成三.HTTP请求行四.HTTP请求头五.HTTP的请求体六.响应报文的组成七.创建HTTP服务八.获取HTTP请求报文九.HTTP设置响应十.GET和POST请求的区别一. 概念 HTTP协议. 中文叫超文本传输协议; 是一种基于TCP/IP的应用层通信协议; 这个协议详细规定了…...

基于springboot+vue的地方美食分享网站

081-springboot基于vue的地方美食分享网站开发语言:Java 框架:springboot JDK版本:JDK1.8 服务器:tomcat7 数据库:mysql 5.7 数据库工具:Navicat11 开发软件:eclipse/myeclipse/idea Maven包&am…...

【Android】之【Aplication】

一、Application简介 Application和Activity,Service一样是Android框架的一个系统组件,当Android程序启动时系统会创建一个Application对象,用来存储系统的一些信息。 Android系统自动会为每个程序运行时创建一个Application类的对象且只创建…...

wordpress前台显示英文/网站关键词排名

编写很多小的函数对象的缺点: 1, 大量的小类分散在代码中,这样很难进行维护 2,理解函数对象被调用处的代码会很难Boost.Lambda : 1】可以创建直接定义和调用的函数对象,或者把它保存起来晚一些再调用&am…...

德州做网站的公司/营销宣传策划方案

PAGEPAGE 71、 秦九韶算法 2、二分法 3、拉格朗日插值 4、埃特金算法 5、复化梯形法6、复化辛甫生算法 7、二阶龙格库塔方法 8、四阶龙格库塔方法 9、改进的欧拉方法 10、迭代法 11、埃特金加速方法:12、牛顿迭代法 13、追赶法 14、雅克比迭代 15、蛋白质设计…...

女性门户资讯类网站织梦dedecms模板/福建网站建设制作

VC++开发常用功能一系列文章 (欢迎订阅,持续更新...) 第11章:VC++实现FTP下载文件与目录 源代码demo已上传到百度网盘:永久生效 ,代码实现了下载FTP服务器指定目录所有文件的功能 实现FTP下载功能有很多种方法: CURL (一般应该用得人比较多) 而且功能也比较强大 wind…...

山东省建设厅定额网站/网站数据统计

在很多游戏中,需要使用到多点触摸功能,因此,Cocos2d-x也支持多点触摸。不过由于Cocos2d-x是跨平台的游戏引擎,所以必须考虑到不同平台的差异。由于不同平台(iPhone、iPad、Android手机等)支持的最大触摸点数…...

凡科怎么建设网站/舟山seo

问题背景: 在Visual Studio 2017中打开一个往期工程,已知工程是在framework 4.6.1下生成的,同时在工程中调用Matlab生成的.dll文件,但是使用的Matlab的版本未知。 1、首先直接打开工程的时候,显示framework版本不对&am…...

公司支付网站款做凭证/网站搜索引擎优化方案

JAVA解析Excel工具easyexcelJava解析、生成Excel比较有名的框架有Apache poi、jxl。但他们都存在一个严重的问题就是非常的耗内存,poi有一套SAX模式的API可以一定程度的解决一些内存溢出的问题,但POI还是有一些缺陷,比如07版Excel解压缩以及解…...