当前位置: 首页 > news >正文

AWGN后验估计下的均值与协方差关系(向量和标量形式)

文章目录

  • AWGN信道向量模型
  • 后验均值与协方差的关系
  • 从实数域拓展到复数域
  • 小结

AWGN信道向量模型

考虑一个随机向量x∼pX(x)\boldsymbol x \sim p_{\boldsymbol X}(\boldsymbol x)xpX(x),信道模型为

q=x+v,v∼N(0,Σ)\boldsymbol q = \boldsymbol x + \boldsymbol v, \ \ \ \boldsymbol v \sim \mathcal N(\boldsymbol 0, \boldsymbol \Sigma)q=x+v,   vN(0,Σ)

已知观测值q\boldsymbol qq,将后验估计的均值表示为Fin(q,Σ)=E[x∣q]F_{in}(\boldsymbol q,\boldsymbol \Sigma)=\mathbb E[\boldsymbol x| \boldsymbol q]Fin(q,Σ)=E[xq],协方差表示为Ein(q,Σ)=Cov[x∣q]\mathcal E_{in}(\boldsymbol q, \boldsymbol \Sigma)=\text{Cov}[\boldsymbol x| \boldsymbol q]Ein(q,Σ)=Cov[xq]

后验均值与协方差的关系

后验均值Fin(q,Σ)F_{in}(\boldsymbol q,\boldsymbol \Sigma)Fin(q,Σ)与协方差Ein(q,Σ)\mathcal E_{in}(\boldsymbol q, \boldsymbol \Sigma)Ein(q,Σ)满足如下关系式

∂∂qFin(q,Σ)=Ein(q,Σ)Σ−1\frac{\partial}{\partial \boldsymbol q} F_{in}(\boldsymbol q, \boldsymbol \Sigma)= \mathcal E_{in}(\boldsymbol q,\boldsymbol \Sigma) \boldsymbol \Sigma^{-1}qFin(q,Σ)=Ein(q,Σ)Σ1

证明:对Σ>0\boldsymbol \Sigma > \boldsymbol 0Σ>0(正定),定义函数

A0(q)=∫pX(x)ϕ(q−x;Σ)dxA1(q)=∫xpX(x)ϕ(q−x;Σ)dxA2(q)=∫xxTpX(x)ϕ(q−x;Σ)dx\begin{aligned} A_0(\boldsymbol q) &= \int p_{\boldsymbol X}(\boldsymbol x) \phi(\boldsymbol q-\boldsymbol x; \boldsymbol \Sigma) \mathrm{d} \boldsymbol x \\ A_1(\boldsymbol q) &= \int \boldsymbol x p_{\boldsymbol X}(\boldsymbol x) \phi(\boldsymbol q-\boldsymbol x; \boldsymbol \Sigma) \mathrm{d} \boldsymbol x \\ A_2(\boldsymbol q) &= \int \boldsymbol {xx}^T p_{\boldsymbol X}(\boldsymbol x) \phi(\boldsymbol q-\boldsymbol x; \boldsymbol \Sigma) \mathrm{d} \boldsymbol x \\ \end{aligned} A0(q)A1(q)A2(q)=pX(x)ϕ(qx;Σ)dx=xpX(x)ϕ(qx;Σ)dx=xxTpX(x)ϕ(qx;Σ)dx

其中ϕ(q−x;Σ)\phi(\boldsymbol q-\boldsymbol x; \boldsymbol \Sigma)ϕ(qx;Σ)表示似然分布pQ∣Xp_{\boldsymbol Q|\boldsymbol X}pQX,均值为x\boldsymbol xx协方差为Σ\boldsymbol \SigmaΣ的高斯分布,即

ϕ(q−x;Σ)≡N(x,Σ)\phi(\boldsymbol q-\boldsymbol x; \boldsymbol \Sigma) \equiv \mathcal {N}(\boldsymbol x, \boldsymbol \Sigma)ϕ(qx;Σ)N(x,Σ)

特殊地,先考虑A0(q)A_0(\boldsymbol q)A0(q)

A0(q)=∫pX(x)ϕ(q−x;Σ)dx=∫pX(x)pQ∣X(q∣x)dx=pQ(q)\begin{aligned} A_0(\boldsymbol q) &= \int p_{\boldsymbol X}(\boldsymbol x) \phi(\boldsymbol q-\boldsymbol x;\boldsymbol \Sigma) \mathrm{d} \boldsymbol x \\ &= \int p_{\boldsymbol X}(\boldsymbol x) p_{\boldsymbol Q|\boldsymbol X}(\boldsymbol q| \boldsymbol x) \mathrm{d} \boldsymbol x \\ &= p_{\boldsymbol Q}(\boldsymbol q) \end{aligned} A0(q)=pX(x)ϕ(qx;Σ)dx=pX(x)pQX(qx)dx=pQ(q)

根据期望的定义,可以写出

Fin(q,Σ)=A1(q)A0(q)F_{in}(\boldsymbol q,\boldsymbol \Sigma) = \frac{A_1(\boldsymbol q)}{A_0(\boldsymbol q)}Fin(q,Σ)=A0(q)A1(q)

根据Cov[w]=E[wwT]−E[w]E[wT]\text{Cov}[\boldsymbol w] =\mathbb E[\boldsymbol w \boldsymbol w^T] - \mathbb E[\boldsymbol w] \mathbb E[\boldsymbol w^T]Cov[w]=E[wwT]E[w]E[wT],可以写出

Ein(q,Σ)=A2(q)A0(q)−A12(q)A02(q)\mathcal E_{in}(\boldsymbol q,\boldsymbol \Sigma) = \frac{A_2(\boldsymbol q)}{A_0(\boldsymbol q)} - \frac{A^2_1(\boldsymbol q)}{A^2_0(\boldsymbol q)}Ein(q,Σ)=A0(q)A2(q)A02(q)A12(q)

对高斯分布求导可得

∂∂qϕ(q−x;Σ)=ϕ(q−x;Σ)⋅(x−q)TΣ−1\frac{\partial}{\partial \boldsymbol q} \phi(\boldsymbol q- \boldsymbol x; \boldsymbol \Sigma) = \phi(\boldsymbol q- \boldsymbol x; \boldsymbol \Sigma) \cdot {(\boldsymbol x- \boldsymbol q)}^T \boldsymbol \Sigma^{-1}qϕ(qx;Σ)=ϕ(qx;Σ)(xq)TΣ1

基于此,我们可以得到
∂∂qFin(q,Σ)=∂∂qA1(q)A0(q)=∂A1(q)∂qA0(q)−A1(q)∂A0(q)∂qA02(q)=A2(q)Σ−1A0(q)−A1(q)A1T(q)Σ−1A02(q)=Ein(q,Σ)Σ−1\begin{aligned} \frac{\partial}{\partial \boldsymbol q} F_{in}(\boldsymbol q, \boldsymbol \Sigma) &=\frac{\partial}{\partial \boldsymbol q} \frac{A_1(\boldsymbol q)}{A_0(\boldsymbol q)} \\ &= \frac{ \frac{\partial A_1(\boldsymbol q)}{\partial \boldsymbol q} A_0(\boldsymbol q) - A_1(\boldsymbol q) \frac{\partial A_0 (\boldsymbol q)}{\partial \boldsymbol q} } { A^2_0(\boldsymbol q)} \\ &= \frac{A_2(\boldsymbol q) \boldsymbol \Sigma^{-1}}{A_0(\boldsymbol q)} - \frac{A_1(\boldsymbol q) A^T_1(\boldsymbol q) \boldsymbol \Sigma^{-1}}{A^2_0(\boldsymbol q)} \\ &= \mathcal E_{in}(\boldsymbol q, \boldsymbol \Sigma) \boldsymbol \Sigma^{-1} \end{aligned} qFin(q,Σ)=qA0(q)A1(q)=A02(q)qA1(q)A0(q)A1(q)qA0(q)=A0(q)A2(q)Σ1A02(q)A1(q)A1T(q)Σ1=Ein(q,Σ)Σ1

证毕。

从实数域拓展到复数域

考虑一个复随机向量x∼pX(x)\boldsymbol x \sim p_{\boldsymbol X}(\boldsymbol x)xpX(x),信道模型为

q=x+v,v∼CN(0,Σ)\boldsymbol q = \boldsymbol x + \boldsymbol v, \ \ \ \boldsymbol v \sim \mathcal {CN}(\boldsymbol 0, \boldsymbol \Sigma)q=x+v,   vCN(0,Σ)

对于上述推导过程,实数域和复数域的差别于一下两个方面:

  • 转置->共轭转置(只是notation的转换)
  • 实高斯分布->复高斯分布(主要关注求导

求导主要体现在
∂∂q∗ϕ(q−x;Σ)=ϕ(q−x;Σ)⋅(x−q)HΣ−1\frac{\partial}{\partial \boldsymbol q^{*}} \phi(\boldsymbol q- \boldsymbol x; \boldsymbol \Sigma) = \phi(\boldsymbol q- \boldsymbol x; \boldsymbol \Sigma) \cdot {(\boldsymbol x- \boldsymbol q)}^H \boldsymbol \Sigma^{-1}qϕ(qx;Σ)=ϕ(qx;Σ)(xq)HΣ1

类似地,可以得到复数域的关系表达式为:
∂∂q∗Fin(q,Σ)=Ein(q,Σ)Σ−1\frac{\partial}{\partial \boldsymbol q^{*}} F_{in}(\boldsymbol q, \boldsymbol \Sigma)= \mathcal E_{in}(\boldsymbol q,\boldsymbol \Sigma) \boldsymbol \Sigma^{-1}qFin(q,Σ)=Ein(q,Σ)Σ1

小结

AWGN信道向量模型为
q=x+v,x∼pX(x),v∼N(0,Σ)\boldsymbol q = \boldsymbol x + \boldsymbol v, \ \ \ \boldsymbol x \sim p_{\boldsymbol X}(\boldsymbol x), \boldsymbol v \sim \mathcal {N}(\boldsymbol 0, \boldsymbol \Sigma)q=x+v,   xpX(x)vN(0,Σ)

MMSE估计均值与协方差的关系

  • 实数域
    ∂∂qE[x∣q]=Cov[x∣q]Σ−1\frac{\partial}{\partial \boldsymbol q} \mathbb E[\boldsymbol x| \boldsymbol q] = \text{Cov}[\boldsymbol x| \boldsymbol q] \boldsymbol \Sigma^{-1}qE[xq]=Cov[xq]Σ1

  • 复数域(v∼CN(0,Σ)v \sim \mathcal {CN}(\boldsymbol 0, \boldsymbol \Sigma)vCN(0,Σ)
    ∂∂q∗E[x∣q]=Cov[x∣q]Σ−1\frac{\partial}{\partial \boldsymbol q^{*}} \mathbb E[\boldsymbol x| \boldsymbol q] = \text{Cov}[\boldsymbol x| \boldsymbol q] \boldsymbol \Sigma^{-1}qE[xq]=Cov[xq]Σ1

退化到标量时,令ν∼N(0,σ2)\nu \sim \mathcal{N}(0, \sigma^2)νN(0,σ2),则

  • 实数域
    ∂∂qE[x∣q]=1σ2var[x∣q]\frac{\partial}{\partial q} \mathbb E[ x| q] = \frac{1}{\sigma^2} \text{var}[ x| q] qE[xq]=σ21var[xq]

  • 复数域(v∼CN(0,σ2)v \sim \mathcal {CN}(0, \sigma^2)vCN(0,σ2)
    ∂∂q∗E[x∣q]=1σ2var[x∣q]\frac{\partial}{\partial q^{*}} \mathbb E[ x| q] = \frac{1}{\sigma^2} \text{var}[ x| q]qE[xq]=σ21var[xq]

注意:上述结论不对x\boldsymbol xx的先验分布pX(x)p_{\boldsymbol X}(\boldsymbol x)pX(x)做任何要求。

相关文章:

AWGN后验估计下的均值与协方差关系(向量和标量形式)

文章目录AWGN信道向量模型后验均值与协方差的关系从实数域拓展到复数域小结AWGN信道向量模型 考虑一个随机向量x∼pX(x)\boldsymbol x \sim p_{\boldsymbol X}(\boldsymbol x)x∼pX​(x),信道模型为 qxv,v∼N(0,Σ)\boldsymbol q \boldsymbol x \boldsymbol v, \…...

Linux常用命令之文件搜索命令

1、常用搜索-find 命令find英文原意find所在路径/bin/find执行权限所有用户功能描述文件搜索语法find [搜索范围] [搜索条件] (默认准确搜索)范例find /etc -name init?? 常用的搜索条件的选项包括: -name:按照文件名进行匹配查找,例&…...

ChatGPT给软件测试行业带来的可能

软件测试在软件开发过程中扮演着至关重要的角色,因为它可以确保软件的质量和可靠性。而随着人工智能技术的不断发展,ChatGPT作为一个强大的自然语言处理工具,可以在软件测试中发挥出许多重要的作用。本文将介绍ChatGPT在软件测试应用中带来的…...

Cadence Allegro 导出Properties on Nets Report报告详解

⏪《上一篇》   🏡《上级目录》   ⏩《下一篇》 目录 1,概述2,Properties on Nets Report作用3,Properties on Nets Report示例4,Properties on Nets Report导出方法4.1,方法14.2,方法2B站关注“硬小二”浏览更多演示视频...

JAVA代码 实现定位数据动态聚集并绘制多边形区域

文章目录思路1、限制聚合距离2、绘制多边形区域3、多边形区域之间合并4、多边形定边点4、逻辑流程一些性能上的优化1、多边形设置圆心2、采用分支合并思路3、清理聚集较分散区域合理性处理1、解决多边形内凹角问题2、解决定边点插入位置问题3、多边形区域扩展成果展示最近有根据…...

基于储能进行调峰和频率调节研究【超线性增益的联合优化】(Matlab代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭&a…...

体验 Linux 的几个监控命令(htop、nmon、netdata)

体验 Linux 的几个监控命令htopnmonnetdatahtop 安装, sudo dnf install -y htop使用, htopnmon 安装, sudo dnf install -y nmon使用, nmon输入c, 输入C, 输入m, 输入n, 输入…...

NOC大赛2022NOC软件创意编程初赛图形化小低组(小学高年级组)

一、选择题 1.如果要控制所有角色一起朝舞台区右侧移动,下面哪个积太块是不需要的 2.要想让三个角色一起移动起来,下面哪个积木块没有作用 ? 3.小猴按照下面的程序前进,小猴最后一次前进了()步。 4.小可同学写了一个画笔程序画出花朵,但是运行后什么都看不到,不可…...

python进行股票收益率计算和风险控制的实现

股票收益率计算和风险控制的实现 在进行股票投资时,计算收益率和进行风险控制是非常重要的。本文将介绍一个与此相关的函数:radio_day_cal()。 radio_day_cal()函数 def radio_day_cal(last_day, sheet_name, df_dict, code_list, new_list):i 0days…...

自从有了这套近4000页的开发文档后,Java面试路上就像开了挂一样

Java是世界最流行的编程语言,也是国内大多数IT公司的主流语言。招聘网站上Java岗位众多,Java工程师似乎不愁找工作。但仔细一看就会发现,Java岗位的招聘薪酬天差地别,人才要求也是五花八门。而在Java工程师求职过程中,…...

Python文件操作

目录 一、文件操作介绍 二、文件的打开和关闭 三、文件的读写 四、文件文件夹相关操作 五、test 一、文件操作介绍 文件 : python中文件是对象 Liunx 文件 : 一切设备都可以看成是文件 磁盘文件 管道 网络Socket 文件属性: 读 写 执行权限 就是把一些存储存放起来&…...

036:cesium加载GPX文件,显示图形

第036个 点击查看专栏目录 本示例的目的是介绍如何在vue+cesium中加载GPX文件, 显示图形。 直接复制下面的 vue+cesium源代码,操作2分钟即可运行实现效果. 文章目录 示例效果配置方式示例源代码(共83行)相关API参考:专栏目标示例效果 配置方式 1)查看基础设置:https:/…...

【AI探索】我问了ChatGPT几个终极问题

终于尝试了一把ChatGPT的强大之处,问了一下关心的几个问题: chatGPT现在在思考吗?有没有什么你感兴趣的问题? 你认为AI会对人类产生哪些方面的影响? 你对人类所涉及到的学科有了解吗?你认为在哪些方面与人类…...

Leetcode 优先队列详解

优先队列 优先队列(Priority Queue):一种特殊的队列。在优先队列中,元素被赋予优先级,当访问队列元素时,具有最高优先级的元素最先删除 普通队列详解Leetcode 队列详解 优先队列与普通队列最大的不同点在于…...

通过两道一年级数学题反思自己

背景 做完这两道题我开始反思自己,到底是什么限制了我?是我自己?是曾经教导我的老师?还是我的父母? 是考试吗?还是什么? 提目 1、正方体个数问题 2、相碰可能性 过程 静态思维: …...

Pytorch :从零搭建一个神经网络

文章目录安装依赖从源码编译pytorchCXX_ABI问题数据集归一化Transforms搭建神经网络Components of a neural networknn.Flattennn.Linearnn.Sequentialnn.SoftmaxModel Parameters优化模型参数设置超参数添加优化循环添加 loss function优化过程完整实现模型的保存和加载安装 …...

【华为OD机试 2023最新 】 区块链文件转储系统(C++ 100%)

题目描述 区块链底层存储是一个链式文件系统,由顺序的N个文件组成,每个文件的大小不一,依次为F1,F2,…,Fn。随着时间的推移,所占存储会越来越大。 云平台考虑将区块链按文件转储到廉价的SATA盘,只有连续的区块链文件才能转储到SATA盘上,且转储的文件之和不能超过SATA盘…...

基于springcloud实现分布式架构网上商城演示【项目源码】分享

基于springcloud实现分布式架构网上商城演示摘要 首先,论文一开始便是清楚的论述了系统的研究内容。其次,剖析系统需求分析,弄明白“做什么”,分析包括业务分析和业务流程的分析以及用例分析,更进一步明确系统的需求。然后在明白了系统的需求基础上需要进一步地设计系统,主要包…...

【Qt】(自制类)适用于QTextCharFormat的字体选择对话框

先附上github链接:https://github.com/Ls-Jan/Qt_CharFormatDialog 主要是作为QFontDialog的平替/增强,毕竟Qt自带的字体选择器一言难尽(用过的都叹气)。 【运行界面】 【功能】 一目了然,可以选择字体,设置字号,设置…...

Unity即时战略/塔防项目实战(一)——构造网格建造系统

Unity即时战略/塔防项目实战(一)—— 构造网格建造系统 效果展示 Unity RTS游戏网格建造系统实现原理 地形和格子划分,建造系统BuildManager构建 地形最终需要划分成一个一个的小方格,首先定义一下小方格: private…...

在软件开发中正确使用MySQL日期时间类型的深度解析

在日常软件开发场景中,时间信息的存储是底层且核心的需求。从金融交易的精确记账时间、用户操作的行为日志,到供应链系统的物流节点时间戳,时间数据的准确性直接决定业务逻辑的可靠性。MySQL作为主流关系型数据库,其日期时间类型的…...

AtCoder 第409​场初级竞赛 A~E题解

A Conflict 【题目链接】 原题链接:A - Conflict 【考点】 枚举 【题目大意】 找到是否有两人都想要的物品。 【解析】 遍历两端字符串,只有在同时为 o 时输出 Yes 并结束程序,否则输出 No。 【难度】 GESP三级 【代码参考】 #i…...

Leetcode 3577. Count the Number of Computer Unlocking Permutations

Leetcode 3577. Count the Number of Computer Unlocking Permutations 1. 解题思路2. 代码实现 题目链接:3577. Count the Number of Computer Unlocking Permutations 1. 解题思路 这一题其实就是一个脑筋急转弯,要想要能够将所有的电脑解锁&#x…...

css3笔记 (1) 自用

outline: none 用于移除元素获得焦点时默认的轮廓线 broder:0 用于移除边框 font-size&#xff1a;0 用于设置字体不显示 list-style: none 消除<li> 标签默认样式 margin: xx auto 版心居中 width:100% 通栏 vertical-align 作用于行内元素 / 表格单元格&#xff…...

Redis数据倾斜问题解决

Redis 数据倾斜问题解析与解决方案 什么是 Redis 数据倾斜 Redis 数据倾斜指的是在 Redis 集群中&#xff0c;部分节点存储的数据量或访问量远高于其他节点&#xff0c;导致这些节点负载过高&#xff0c;影响整体性能。 数据倾斜的主要表现 部分节点内存使用率远高于其他节…...

听写流程自动化实践,轻量级教育辅助

随着智能教育工具的发展&#xff0c;越来越多的传统学习方式正在被数字化、自动化所优化。听写作为语文、英语等学科中重要的基础训练形式&#xff0c;也迎来了更高效的解决方案。 这是一款轻量但功能强大的听写辅助工具。它是基于本地词库与可选在线语音引擎构建&#xff0c;…...

Xen Server服务器释放磁盘空间

disk.sh #!/bin/bashcd /run/sr-mount/e54f0646-ae11-0457-b64f-eba4673b824c # 全部虚拟机物理磁盘文件存储 a$(ls -l | awk {print $NF} | cut -d. -f1) # 使用中的虚拟机物理磁盘文件 b$(xe vm-disk-list --multiple | grep uuid | awk {print $NF})printf "%s\n"…...

LLMs 系列实操科普(1)

写在前面&#xff1a; 本期内容我们继续 Andrej Karpathy 的《How I use LLMs》讲座内容&#xff0c;原视频时长 ~130 分钟&#xff0c;以实操演示主流的一些 LLMs 的使用&#xff0c;由于涉及到实操&#xff0c;实际上并不适合以文字整理&#xff0c;但还是决定尽量整理一份笔…...

腾讯云V3签名

想要接入腾讯云的Api&#xff0c;必然先按其文档计算出所要求的签名。 之前也调用过腾讯云的接口&#xff0c;但总是卡在签名这一步&#xff0c;最后放弃选择SDK&#xff0c;这次终于自己代码实现。 可能腾讯云翻新了接口文档&#xff0c;现在阅读起来&#xff0c;清晰了很多&…...

Golang——6、指针和结构体

指针和结构体 1、指针1.1、指针地址和指针类型1.2、指针取值1.3、new和make 2、结构体2.1、type关键字的使用2.2、结构体的定义和初始化2.3、结构体方法和接收者2.4、给任意类型添加方法2.5、结构体的匿名字段2.6、嵌套结构体2.7、嵌套匿名结构体2.8、结构体的继承 3、结构体与…...