kafka监控平台Kafdrop:使用记录
背景
AI的发展真是太方便了,让它给我推荐一款轻量级,没有学习曲线的kafka监控平台,它就给我推荐这一款。用了一下果然没有一点学习曲线。
目前已经满足了我的需求,可视化界面,topic、消息、消费者group信息以及消费情况都有体现。
我是在windows环境下,基于docker安装,本质上基于docker安装,跟环境没有关系,只是bash命令有时会偶有差异,所以,在此做一下简单说明。
简单记录一下安装步骤,以及使用情况。
安装及运行
第一步:拉取镜像。
docker pull obsidiandynamics/kafdrop
执行结果如下:

第二步:运行监控平台。
docker run -d --rm -p 9000:9000 -e KAFKA_BROKERCONNECT=<host:port,host:port> -e SERVER_SERVLET_CONTEXTPATH="/" obsidiandynamics/kafdrop:latest
第三步:查看运行情况。
可以通过http://localhost:9000 访问 Kafdrop 的 Web 界面。
详细使用说明见:obsidiandynamics/kafdrop: Kafka Web UI (github.com)
监控平台简要说明
首页,kafka概览信息,包括kafka的连接信息,topic总数,分区总数等。

选择一个topic可以看到其消费情况。

其中,点击View Message可以查看该topic下的消息详情。
Partion Detail是消息在每个分区上情况。
通过Consumers可以查阅每个消费者的消费情况,Combined Lag表示对应的消费者还有多少消息没有消费。
相关文章:
kafka监控平台Kafdrop:使用记录
背景 AI的发展真是太方便了,让它给我推荐一款轻量级,没有学习曲线的kafka监控平台,它就给我推荐这一款。用了一下果然没有一点学习曲线。 目前已经满足了我的需求,可视化界面,topic、消息、消费者group信息以及消费情…...
的使用和内联函数
今天我们来了解一下C中的&和内联函数 引用标识符& C觉得C语言部分的指针有些麻烦,容易混乱,所以C创造了一个标识符&,表示是谁的别名。跟指针对比一下:int* a1&b1;int &a2b2;这样看,显然a1存放的…...
征程6 上基于 DEB 工具实现包管理
1.引言 在开发、调测过程中,开发人员需要将系统软件、应用软件部署到 Soc 板端,以用于运行调试。传统的部署方式是通过解压复制或者调用部署脚本。这样的部署方式需要有着方式不统一、维护投入大的缺点。 在 linux 系统上,大多采用包管理的…...
【git】一文详解: git rebase到底有啥问题
引子 我反复看到这样的评论:“git rebase 像屎一样”。人们似乎对此有很强烈的感受,我真的很惊讶,因为我没有遇到太多使用 rebase 的问题,而且我一直在使用它。 使用 rebase 的成本有多大?在实际使用中它给你带来了什…...
高性能计算应用优化实践之WRF
WRF(Weather Research Forecast)模式是由美国国家大气研究中心(NCAR)、国家环境预报中心(NCEP)等机构自1997年起联合开发的新一代高分辨率中尺度天气研究预报模式,重点解决分辨率为1~…...
nsight-compute使用教程
一 安装 有的时候在linux上安装上了nsight-compute,可以生成报告,但是却因为缺少qt组件而无法打开,我选择的方法是在linux上生成报告,在window上的nsight compute的图形界面打开,需要注意的是,nsight compute图形界面的版本一定要更高,不然无法打开 二 使用 2.1 生成…...
【深度学习】03-神经网络01-4 神经网络的pytorch搭建和参数计算
# 计算模型参数,查看模型结构,我们要查看有多少参数,需要先安装包 pip install torchsummary import torch import torch.nn as nn from torchsummary import summary # 导入 summary 函数,用于计算模型参数和查看模型结构# 创建神经网络模型类 class Mo…...
我与Linux的爱恋:命令行参数|环境变量
🔥个人主页:guoguoqiang. 🔥专栏:Linux的学习 文章目录 一.命令行参数二.环境变量1.环境变量的基本概念2.查看环境变量的方法3.环境变量相关命令4.环境变量的组织方式以及获取环境变量的三种方法 环境变量具有全局属性 一…...
django drf 统一Response格式
场景 需要将响应体按照格式规范返回给前端。 例如: 响应体中包含以下字段: {"result": true,"data": {},"code": 200,"message": "ok","request_id": "20cadfe4-51cd-42f6-af81-0…...
SM2协同签名算法中随机数K的随机性对算法安全的影响
前面介绍过若持有私钥d的用户两次SM2签名过程中随机数k相同,在对手获得两次签名结果Sig1和Sig2的情况下,可破解私钥d。 具体见SM2签名算法中随机数K的随机性对算法安全的影响_sm2关闭随机数-CSDN博客 另关于SM2协同签名过程,具体见SM2协同签…...
解决setMouseTracking(true)后还是无法触发mouseMoveEvent的问题
如图,在给整体界面设置鼠标追踪且给ui界面的子控件也设置了鼠标追踪后,运行后的界面仍然有些地方移动鼠标无法触发 mouseMoveEvent函数,这就令人头痛。。。 我的解决方法是:重载event函数: 完美解决。。。...
基于深度学习的花卉智能分类识别系统
温馨提示:文末有 CSDN 平台官方提供的学长 QQ 名片 :) 1. 项目简介 传统的花卉分类方法通常依赖于专家的知识和经验,这种方法不仅耗时耗力,而且容易受到主观因素的影响。本系统利用 TensorFlow、Keras 等深度学习框架构建卷积神经网络&#…...
Springboot集成MongoDb快速入门
1. 什么是MongoDB 1.1. 基本概念 MongoDB是一个基于分布式文件存储 [1] 的数据库。由C语言编写。旨在为WEB应用提供可扩展的高性能数据存储解决方案。 MongoDB是一个介于关系数据库和非关系数据库之间的产品,是非关系数据库当中功能最丰富,最像关系数…...
DERT目标检测—End-to-End Object Detection with Transformers
DERT:使用Transformer的端到端目标检测 论文题目:End-to-End Object Detection with Transformers 官方代码:https://github.com/facebookresearch/detr 论文题目中包括的一个创新点End to End(端到端的方法)简单的理解就是没有使…...
软件后端开发速度慢的科技公司老板有没有思考如何破局
最近接到两个科技公司咨询,说是他们公司后端开发速度太慢,前端程序员老等着,后端程序员拖了项目进度。 这种问题不只他们公司,在软件外包公司中,有一部分项目甲方客户要得急,以至于要求软件开发要快&#…...
开放原子超级链内核XuperCore可搭建区块链
区块链是一种分布式数据库技术,它以块的形式存储数据,并使用密码学方法保证数据的安全性和完整性。 每个块包含一定数量的交易信息,并通过加密链接到前一个块,形成一个不断增长的链条。 这种设计使得数据在网络中无法被篡改,因为任何尝试修改一个块的数据都会破坏整个链的…...
【Qualcomm】高通SNPE框架的使用 | 原始模型转换为量化的DLC文件 | 在Android的CPU端运行模型
目录 ① 激活snpe环境 ② 设置环境变量 ③ 模型转换 ④ run on Android 首先,默认SNPE工具已经下载并且Setup相关工作均已完成。同时,拥有原始模型文件,本文使用的模型文件为SNPE 框架示例的inception_v3_2016_08_28_frozen.pb文件。imag…...
C++map与set
文章目录 前言一、map和set基础知识二、set与map使用示例1.set去重操作2.map字典统计 总结 前言 本章主要介绍map和set的基本知识与用法。 一、map和set基础知识 map与set属于STL的一部分,他们底层都是是同红黑树来实现的。 ①set常见用途是去重 ,set不…...
随手记:前端一些定位bug的方法
有时候接到bug很烦躁,不管是任何环境的bug,看到都影响心情,随后记总结一下查看bug的思路,在摸不着头脑的时候或者焦虑的时候,可以静下心来顺着思路思考和排查bug可能产生的原因 1.接到bug,最重要的是&am…...
【深度学习】03-神经网络2-1损失函数
在神经网络中,不同任务类型(如多分类、二分类、回归)需要使用不同的损失函数来衡量模型预测和真实值之间的差异。选择合适的损失函数对于模型的性能至关重要。 这里的是API 的注意⚠️,但是在真实的公式中,目标值一定是…...
手游刚开服就被攻击怎么办?如何防御DDoS?
开服初期是手游最脆弱的阶段,极易成为DDoS攻击的目标。一旦遭遇攻击,可能导致服务器瘫痪、玩家流失,甚至造成巨大经济损失。本文为开发者提供一套简洁有效的应急与防御方案,帮助快速应对并构建长期防护体系。 一、遭遇攻击的紧急应…...
从WWDC看苹果产品发展的规律
WWDC 是苹果公司一年一度面向全球开发者的盛会,其主题演讲展现了苹果在产品设计、技术路线、用户体验和生态系统构建上的核心理念与演进脉络。我们借助 ChatGPT Deep Research 工具,对过去十年 WWDC 主题演讲内容进行了系统化分析,形成了这份…...
AI Agent与Agentic AI:原理、应用、挑战与未来展望
文章目录 一、引言二、AI Agent与Agentic AI的兴起2.1 技术契机与生态成熟2.2 Agent的定义与特征2.3 Agent的发展历程 三、AI Agent的核心技术栈解密3.1 感知模块代码示例:使用Python和OpenCV进行图像识别 3.2 认知与决策模块代码示例:使用OpenAI GPT-3进…...
JavaScript 中的 ES|QL:利用 Apache Arrow 工具
作者:来自 Elastic Jeffrey Rengifo 学习如何将 ES|QL 与 JavaScript 的 Apache Arrow 客户端工具一起使用。 想获得 Elastic 认证吗?了解下一期 Elasticsearch Engineer 培训的时间吧! Elasticsearch 拥有众多新功能,助你为自己…...
Auto-Coder使用GPT-4o完成:在用TabPFN这个模型构建一个预测未来3天涨跌的分类任务
通过akshare库,获取股票数据,并生成TabPFN这个模型 可以识别、处理的格式,写一个完整的预处理示例,并构建一个预测未来 3 天股价涨跌的分类任务 用TabPFN这个模型构建一个预测未来 3 天股价涨跌的分类任务,进行预测并输…...
HBuilderX安装(uni-app和小程序开发)
下载HBuilderX 访问官方网站:https://www.dcloud.io/hbuilderx.html 根据您的操作系统选择合适版本: Windows版(推荐下载标准版) Windows系统安装步骤 运行安装程序: 双击下载的.exe安装文件 如果出现安全提示&…...
【VLNs篇】07:NavRL—在动态环境中学习安全飞行
项目内容论文标题NavRL: 在动态环境中学习安全飞行 (NavRL: Learning Safe Flight in Dynamic Environments)核心问题解决无人机在包含静态和动态障碍物的复杂环境中进行安全、高效自主导航的挑战,克服传统方法和现有强化学习方法的局限性。核心算法基于近端策略优化…...
排序算法总结(C++)
目录 一、稳定性二、排序算法选择、冒泡、插入排序归并排序随机快速排序堆排序基数排序计数排序 三、总结 一、稳定性 排序算法的稳定性是指:同样大小的样本 **(同样大小的数据)**在排序之后不会改变原始的相对次序。 稳定性对基础类型对象…...
Java数值运算常见陷阱与规避方法
整数除法中的舍入问题 问题现象 当开发者预期进行浮点除法却误用整数除法时,会出现小数部分被截断的情况。典型错误模式如下: void process(int value) {double half = value / 2; // 整数除法导致截断// 使用half变量 }此时...
适应性Java用于现代 API:REST、GraphQL 和事件驱动
在快速发展的软件开发领域,REST、GraphQL 和事件驱动架构等新的 API 标准对于构建可扩展、高效的系统至关重要。Java 在现代 API 方面以其在企业应用中的稳定性而闻名,不断适应这些现代范式的需求。随着不断发展的生态系统,Java 在现代 API 方…...
