如何将网站让百度收录/竞价账户托管
动态规划day45:编辑距离|115. 不同的子序列、583. 两个字符串的删除操作、72. 编辑距离(动规终极好题)
- 115. 不同的子序列
- 583. 两个字符串的删除操作
- 72. 编辑距离(动规终极好题)
115. 不同的子序列
给你两个字符串 s
和 t
,统计并返回在 s
的 子序列 中 t
出现的个数,结果需要对 10^9 + 7 取模。
示例 1:
输入:s = “rabbbit”, t = “rabbit”
输出:3
解释:
如下所示, 有 3 种可以从 s 中得到 “rabbit” 的方案。
rabbbit
rabbbit
rabbbit
示例 2:
输入:s = “babgbag”, t = “bag”
输出:5
解释:
如下所示, 有 5 种可以从 s 中得到 “bag” 的方案。
babgbag
babgbag
babgbag
babgbag
babgbag
提示:
1 <= s.length, t.length <= 1000
s
和t
由英文字母组成
class Solution {
public:int numDistinct(string s, string t) {vector<vector<uint64_t>> dp(s.size()+1,vector<uint64_t>(t.size()+1));for(int i=0;i<=s.size();i++)dp[i][0]=1;for(int i=1;i<=t.size();i++)dp[0][i]=0;for(int i=1;i<=s.size();i++)for(int j=1;j<=t.size();j++){if(s[i-1]==t[j-1])dp[i][j]=dp[i-1][j-1]+dp[i-1][j];elsedp[i][j]=dp[i-1][j];}return dp[s.size()][t.size()];}
};
本题关键:递推公式的推导
首先,dp [i] [j]的含义是以 s[i-1] 为结尾的序列中,有多少个以 t[j-1] 为结尾的序列。
据此,我们分两种情况来讨论:
-
第一种,当s[i-1]与t[j-1]不相等,那么s有没有s[i-1],效果其实都是一样的,即dp[i] [j]=dp[i-1] [j]。
-
第二种,当s[i-1]与t[j-1]相等时,此时s[i-1]显然时有用的。当我们使用s[i-1]时,由于末尾元素相等,我们稍加思索,可以得出:dp[i] [j]=dp[i-1] [j-1];当我们不使用s[i-1]时,则和第一种一样,d[i] [j]=dp[i-1] [j]。那么它们是求和还是求最大值呢?显然是求和了,即:
if(s[i-1]==t[j-1])dp[i][j]=dp[i-1][j-1]+dp[i-1][j];elsedp[i][j]=dp[i-1][j];
另外,uint64_t等效于unsigned long 且uint64_t 表示数据范围则是0 ~2^64-1,int16_t
表示数据范围为-264~264-1。
583. 两个字符串的删除操作
给定两个单词 word1
和 word2
,返回使得 word1
和 word2
相同所需的最小步数。
每步 可以删除任意一个字符串中的一个字符。
示例 1:
输入: word1 = “sea”, word2 = “eat”
输出: 2
解释: 第一步将 “sea” 变为 “ea” ,第二步将 "eat "变为 “ea”
示例 2:
输入:word1 = “leetcode”, word2 = “etco”
输出:4
提示:
1 <= word1.length, word2.length <= 500
word1
和word2
只包含小写英文字母
class Solution {
public:int minDistance(string word1, string word2) {int len1=word1.size();int len2=word2.size();vector<vector<int>> dp(len1+1,vector<int>(len2+1));for(int i=0;i<=len1;i++)dp[i][0]=i;for(int j=1;j<=len2;j++)dp[0][j]=j;for(int i=1;i<=len1;i++)for(int j=1;j<=len2;j++){if(word1[i-1]==word2[j-1])dp[i][j]=dp[i-1][j-1];elsedp[i][j]=min(dp[i-1][j]+1,dp[i][j-1]+1);}return dp[len1][len2];}
};
在上一题的基础上,这道题还是很容易想出来的。递推公式的逻辑是当末尾元素相等时,就等效于把末尾元素去掉,即dp[i] [j]=dp[i-1] [j-1];当末尾元素不相等时,那么末尾元素必要删一个,分两种情况,然后取最小值即可。
72. 编辑距离(动规终极好题)
给你两个单词 word1
和 word2
, 请返回将 word1
转换成 word2
所使用的最少操作数 。
你可以对一个单词进行如下三种操作:
- 插入一个字符
- 删除一个字符
- 替换一个字符
示例 1:
输入:word1 = “horse”, word2 = “ros”
输出:3
解释:
horse -> rorse (将 ‘h’ 替换为 ‘r’)
rorse -> rose (删除 ‘r’)
rose -> ros (删除 ‘e’)
示例 2:
输入:word1 = “intention”, word2 = “execution”
输出:5
解释:
intention -> inention (删除 ‘t’)
inention -> enention (将 ‘i’ 替换为 ‘e’)
enention -> exention (将 ‘n’ 替换为 ‘x’)
exention -> exection (将 ‘n’ 替换为 ‘c’)
exection -> execution (插入 ‘u’)
提示:
0 <= word1.length, word2.length <= 500
word1
和word2
由小写英文字母组成
class Solution {
public:int minDistance(string word1, string word2) {int len1=word1.size();int len2=word2.size();vector<vector<int>> dp(len1+1,vector<int>(len2+1));for(int i=0;i<=len1;i++)dp[i][0]=i;for(int j=1;j<=len2;j++)dp[0][j]=j;for(int i=1;i<=len1;i++)for(int j=1;j<=len2;j++){if(word1[i-1]==word2[j-1])dp[i][j]=dp[i-1][j-1];elsedp[i][j]=min(min(dp[i-1][j]+1,dp[i][j-1]+1),dp[i-1][j-1]+1);}return dp[len1][len2];}
};
难点还是在递归公式,要分两种情况讨论:
- 当word1[i-1]==word2[j-1]时,此时末尾元素相等,说明这两个元素时不需要操作的,则dp [i] [j]=dp [i-1] [j-1]
- 当word1[i-1]!=word2[j-1]时,又要分3种情况讨论:
- 删:若删 word1,则dp [i] [j]=dp [i-1] [j]+1;若删 word2,则dp [i] [j]=dp [i] [j-1]+1
- 增:从问题的本质上讲,增和删时一致的,即 word2 增其实是等效于 word1 删。也就是说,实现增和删效果的代码本质上是一致的,所以不用另写!
- 替换:两个末尾元素都参与替换了,显然dp [i] [j]=dp [i-1] [j-1]+1
相关文章:

动态规划day45:编辑距离|115. 不同的子序列、583. 两个字符串的删除操作、72. 编辑距离(动规终极好题)
动态规划day45:编辑距离|115. 不同的子序列、583. 两个字符串的删除操作、72. 编辑距离(动规终极好题) 115. 不同的子序列583. 两个字符串的删除操作72. 编辑距离(动规终极好题) 115. 不同的子序列 给你两个字符串 s 和 t ,统计并返回在 s 的 子序列 中…...

剑指 offer 刷题集
目录 数组 1. LCR 121. 寻找目标值 - 二维数组 2. LCR 120. 寻找文件副本 3. LCR 128. 库存管理 I 4. LCR 131. 砍竹子 I 5. LCR 132. 砍竹子 II 6. LCR 135. 报数 7. LCR 139. 训练计划 I 8. LCR 158. 库存管理 II 9. LCR 159. 库存管理 III 10. LCR 160. 数据流中…...

C++在线开发环境搭建(WEBIDE)
C在线开发环境搭建 一、环境说明1.1 系统基础环境说明1.1 docker-ce社区版安装 二、codeserver构建2.1 构建codeserver环境的docker容器2.2 构建docker镜像2.3 运行docker2.4 运行展示 三、构建codeserver中的c开发环境3.1 插件下载3.2 插件安装 四、其他知识4.2 code-server配…...

重磅首发!大语言模型LLM学习路线图来了!
ChatGPT的出现在全球掀起了AI大模型的浪潮,2023年可以被称为AI元年,AI大模型以一种野蛮的方式,闯入你我的生活之中。 从问答对话到辅助编程,从图画解析到自主创作,AI所展现出来的能力,超出了多数人的预料&…...

neo4j关系的创建删除 图的删除
关系的创建和删除 关系创建 CREATE (:Person {name:"jack"})-[:LOVE]->(:Person {name:"Rose"})已有这个关系时,merge不起效果 MERGE (:Person {name:"Jack" })-[:LOVE]->(:Person {name:"Rose"})关系兼顾节点和关…...

【WRF运行第三期】服务器上运行WRF模型(官网案例-Hurricane Matthew)
【WRF运行第三期】运行WRF模型(官网案例-Hurricane Matthew) 官网案例-Hurricane Matthew介绍0 创建DATA文件夹1 WPS预处理1.1 解压GRIB数据(ungrib.exe)1.1.1 解压GRIB数据---GFS(Matthew案例研究数据)1.1…...

基于springboot的书店图书销售管理系统的设计与实现 (含源码+sql+视频导入教程)
👉文末查看项目功能视频演示获取源码sql脚本视频导入教程视频 1 、功能描述 基于springboot的书店图书销售管理系统拥有三个角色 管理员:用户管理、角色管理、权限管理、店铺管理等商家:图书管理、上架图书、访问量统计、销售总额统计、订单…...

Spring MVC 基本配置步骤 总结
1.简介 本文记录Spring MVC基本项目拉起配置步骤。 2.步骤 在pom.xml中导入依赖: <dependency><groupId>org.springframework</groupId><artifactId>spring-webmvc</artifactId><version>6.0.6</version><scope>…...

HCIP--以太网交换安全(一)
以太网交换安全概述:以太网交换安全是一系列技术和策略的集合,旨在保护以太网交换机免受各种网络攻击和威胁。 端口隔离 一、端口隔离概述: 作用:可以实现同一个VLAN内端口的隔离 优势: 端口隔离功能为用户提供了更…...

PyQt5中关于QLineEdit的空输入报错的简单处理
PyQt5中关于QLineEdit的空输入报错的简单处理 前言分析原因解决办法总结 前言 在PyQt5的界面中对于数据的输入,最常用的就是QLineEdit控件,该控件作为基本的数据输入控件已经能满足我们的简单使用。在使用过程,出现闪退情况,发现…...

【前端】ES12:ES12新特性
文章目录 1 逻辑赋值操作符2 数字分隔符3 replaceAll4 Promise.any5 WeakRef6 FinalizationRegistry 1 逻辑赋值操作符 逻辑赋值操作符 ??、&&、 ||。 let a true let b false //a && b //false a || b ; //true console.log(a)let obj {name:"ker…...

语音识别(非实时)
1.环境 python :3.10.14 2.完整代码 import whisper #whisper import wave # 使用wave库可读、写wav类型的音频文件 import pyaudio # 使用pyaudio库可以进行录音,播放,生成wav文件 def record(time): # 录音程序# 定义数据流块CHUNK …...

【计算机网络】--URL统一资源定位符
一个网站地址实例 scheme://host.domain:port/path/filename scheme——定义因特网服务的类型,常见的类型是http host——定义域主机(http的默认主机是www) domain———定义因特网的域名,例如,jinyun.fun …...

在成都建“圈”五年,鲲鹏让智能化新风吹遍巴蜀大地
科技圈里流行着“互联网四大中心”的说法,即南边的深圳、东边的杭州、北边的北京和西边的成都。 深圳、杭州、北京几乎没有太大的争议,这里是国内著名的互联网公司聚集地,有着国内排行前三的互联网企业总部,单单一个北京西二旗就…...

Unity图形用户界面!*★,°*:.☆( ̄▽ ̄)/$:*.°★* 。(万字解析)
Unity 3D GUI 简介 游戏开发过程中,开发人员往往会通过制作大量的图形用户界面( Graphical User Interface,GUI )来增强游戏与玩家的交互性。 Unity 3D 中的图形系统分为 OnGUI、NGUI、UGUI等,这些类型的图形系统内容…...

【JAVA报错已解决】Java.lang.NullPointerException
🎬 鸽芷咕:个人主页 🔥 个人专栏: 《C干货基地》《粉丝福利》 ⛺️生活的理想,就是为了理想的生活! 专栏介绍 在软件开发和日常使用中,BUG是不可避免的。本专栏致力于为广大开发者和技术爱好者提供一个关于BUG解决的经…...

JSON 教程
JSON 教程 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>Document</title> </head> …...

HBase 的基本架构 详解
HBase 是一个分布式的、面向列的数据库,构建在 HDFS(Hadoop Distributed File System)之上,提供高效的随机读写操作。为了全面理解 HBase 的基础架构,需要从逻辑架构、物理存储、组件之间的交互、数据管理和底层设计出…...

crypt.h:No such file or directory报错处理
crypt.h:No such file or directory 报错处理 前言:本文初编辑于2024年9月27日 CSDN主页:https://blog.csdn.net/rvdgdsva 博客园主页:https://www.cnblogs.com/hassle 博客园本文链接: 大!萌࿰…...

网络消费维权的9个常见法律问题
一、忘记付尾款,定金能否退还? 不能。消费者在网络提交订单后,合同即成立。合同成立后,消费者的义务为按时付款。若消费者在支付定金后未能支付尾款,即未能履行付款义务,会导致合同无法履行,构…...

detectron2是怎么建立模型的?以SparseInst代码为例
看SparseInst论文发现论文里有些地方没讲清楚;遂找SparseInst源码来看模型结构 我选择从推理代码来找模型结构: 经探索,在SparseInst代码里,推理需要执行代码 python demo.py --config-file configs/sparse_inst_r50_base.yaml …...

kafka监控平台Kafdrop:使用记录
背景 AI的发展真是太方便了,让它给我推荐一款轻量级,没有学习曲线的kafka监控平台,它就给我推荐这一款。用了一下果然没有一点学习曲线。 目前已经满足了我的需求,可视化界面,topic、消息、消费者group信息以及消费情…...

的使用和内联函数
今天我们来了解一下C中的&和内联函数 引用标识符& C觉得C语言部分的指针有些麻烦,容易混乱,所以C创造了一个标识符&,表示是谁的别名。跟指针对比一下:int* a1&b1;int &a2b2;这样看,显然a1存放的…...

征程6 上基于 DEB 工具实现包管理
1.引言 在开发、调测过程中,开发人员需要将系统软件、应用软件部署到 Soc 板端,以用于运行调试。传统的部署方式是通过解压复制或者调用部署脚本。这样的部署方式需要有着方式不统一、维护投入大的缺点。 在 linux 系统上,大多采用包管理的…...

【git】一文详解: git rebase到底有啥问题
引子 我反复看到这样的评论:“git rebase 像屎一样”。人们似乎对此有很强烈的感受,我真的很惊讶,因为我没有遇到太多使用 rebase 的问题,而且我一直在使用它。 使用 rebase 的成本有多大?在实际使用中它给你带来了什…...

高性能计算应用优化实践之WRF
WRF(Weather Research Forecast)模式是由美国国家大气研究中心(NCAR)、国家环境预报中心(NCEP)等机构自1997年起联合开发的新一代高分辨率中尺度天气研究预报模式,重点解决分辨率为1~…...

nsight-compute使用教程
一 安装 有的时候在linux上安装上了nsight-compute,可以生成报告,但是却因为缺少qt组件而无法打开,我选择的方法是在linux上生成报告,在window上的nsight compute的图形界面打开,需要注意的是,nsight compute图形界面的版本一定要更高,不然无法打开 二 使用 2.1 生成…...

【深度学习】03-神经网络01-4 神经网络的pytorch搭建和参数计算
# 计算模型参数,查看模型结构,我们要查看有多少参数,需要先安装包 pip install torchsummary import torch import torch.nn as nn from torchsummary import summary # 导入 summary 函数,用于计算模型参数和查看模型结构# 创建神经网络模型类 class Mo…...

我与Linux的爱恋:命令行参数|环境变量
🔥个人主页:guoguoqiang. 🔥专栏:Linux的学习 文章目录 一.命令行参数二.环境变量1.环境变量的基本概念2.查看环境变量的方法3.环境变量相关命令4.环境变量的组织方式以及获取环境变量的三种方法 环境变量具有全局属性 一…...

django drf 统一Response格式
场景 需要将响应体按照格式规范返回给前端。 例如: 响应体中包含以下字段: {"result": true,"data": {},"code": 200,"message": "ok","request_id": "20cadfe4-51cd-42f6-af81-0…...