山东青岛网站建设公司哪家专业/口碑营销的经典案例
初识 Elasticsearch
认识和安装
Elasticsearch 是由 Elastic 公司开发的一套强大的搜索引擎技术,属于 Elastic 技术栈的一部分。完整的技术栈包括:
- Elasticsearch:用于数据存储、计算和搜索。
- Logstash/Beats:用于数据收集。
- Kibana:用于数据可视化。
这套技术栈通常被称为 elastic stack (ELK),广泛应用于日志收集、系统监控和状态分析等场景。
而elasticsearch是elastic stack的核心,负责存储、搜索、分析数据。
核心组件
Elasticsearch 是整个技术栈的核心,提供了强大的数据存储、搜索和分析功能。
Kibana 是一个用于操作 Elasticsearch 的可视化控制台,它通过 RESTful API 与 Elasticsearch 进行交互,让用户能够更直观地管理和分析数据。Kibana 的主要功能包括:
- 数据搜索与展示:支持对 Elasticsearch 数据的灵活搜索和展示。
- 统计与聚合:能够对数据进行统计分析,并生成图表和报表。
- 集群状态监控:提供对 Elasticsearch 集群健康状态的监控。
- 开发控制台(DevTools):提供语法提示,帮助用户更方便地使用 Elasticsearch 的 RESTful API。
安装elasticsearch
通过下面的Docker命令(Windows 命令提示符)即可安装单机版本的elasticsearch:
docker run -d ^--name es ^-e "ES_JAVA_OPTS=-Xms512m -Xmx512m" ^-e "discovery.type=single-node" ^-v es-data:/usr/share/elasticsearch/data ^-v es-plugins:/usr/share/elasticsearch/plugins ^--privileged ^--network hm-net ^-p 9200:9200 ^-p 9300:9300 ^elasticsearch:7.12.1
安装完成后,访问9200端口,即可看到响应的Elasticsearch服务的基本信息:
安装Kibana
通过下面的Docker命令(Windows 命令提示符),即可部署Kibana:
docker run -d ^--name kibana ^-e ELASTICSEARCH_HOSTS=http://es:9200 ^--network=hm-net ^-p 5601:5601 ^kibana:7.12.1
安装完成后,直接访问5601端口,即可看到控制台页面:
选择Explore on my own
之后,进入主页面:
然后选中Dev tools
,进入开发工具页面:
倒排索引
Elasticsearch 之所以能够提供高性能的搜索功能,主要归功于其底层的倒排索引技术。倒排索引是一种特殊的数据结构,它能够极大地提高文本搜索的效率。
正向索引
在传统的数据库系统中,如 MySQL,通常使用的是正向索引。正向索引是基于记录的 ID 或其他字段创建的索引。例如,给定一个商品表 tb_goods,如果为 id 字段创建索引,那么根据 id 查询时,可以直接通过索引快速定位到记录。
然而,如果需要根据 title 字段进行模糊查询,传统的正向索引就无法高效地处理。在这种情况下,数据库系统通常需要进行全表扫描,逐行检查 title 字段是否包含用户搜索的关键词。这种逐行扫描的方式在大数据量的情况下效率非常低下。
倒排索引
倒排索引是对正向索引的一种特殊处理,它将文档中的每个词条与包含该词条的文档进行关联。倒排索引中有两个核心概念:
- 文档(Document):用于搜索的数据单元,例如一个网页、一个商品信息等。
- 词条(Term):对文档数据或用户搜索数据进行分词后得到的具有含义的词语。例如,“我是中国人” 可以被分词为 “我”、“是”、“中国人”、“中国”、“国人” 等词条。
创建倒排索引的流程如下:
- 分词:将每个文档的数据进行分词,得到一个个词条。
- 创建索引表:创建一个表,每行数据包括词条、词条所在的文档 ID、词条在文档中的位置等信息。
- 索引优化:由于词条具有唯一性,可以为词条创建索引,例如使用哈希表结构索引。
倒排索引的搜索流程如下(以搜索 “华为手机” 为例):
- 分词:用户输入 “华为手机”,对其进行分词,得到词条 “华为” 和 “手机”。
- 查找词条:拿着词条在倒排索引中查找,得到包含这些词条的文档 ID。
- 获取文档:根据文档 ID 在正向索引中查找具体的文档。
通过倒排索引,搜索过程可以避免全表扫描,因为词条和文档 ID 都建立了索引,查询速度非常快。
正向索引与倒排索引的对比
正向索引:
优点:
- 可以为多个字段创建索引。
- 根据索引字段进行搜索和排序时速度非常快。
缺点:
- 根据非索引字段或索引字段中的部分词条查找时,只能进行全表扫描。
倒排索引:
优点:
- 根据词条进行搜索和模糊搜索时速度非常快。
缺点:
- 只能为词条创建索引,而不是字段。
- 无法根据字段进行排序。
总结来说,正向索引适用于精确查询和排序,而倒排索引则适用于全文搜索和模糊查询。Elasticsearch 通过结合这两种索引技术,提供了高效的全文搜索能力。
基础概念
Elasticsearch 中有许多独特的概念,与传统的关系型数据库(如 MySQL)有所不同,但也有相似之处。理解这些概念对于掌握 Elasticsearch 的使用至关重要。
文档和字段
Elasticsearch 是面向文档(Document)存储的,文档可以是数据库中的一条商品数据、一个订单信息等。文档数据会被序列化为 JSON 格式后存储在 Elasticsearch 中。
每个 JSON 文档中包含多个字段(Field),类似于数据库中的列。字段是文档的基本组成部分,每个字段都有其数据类型和值。
索引和映射
索引(Index)是相同类型的文档的集合。例如:
- 所有用户文档可以组织在一起,称为用户的索引。
- 所有商品的文档可以组织在一起,称为商品的索引。
- 所有订单的文档可以组织在一起,称为订单的索引。
索引类似于数据库中的表。数据库的表会有约束信息,用来定义表的结构、字段的名称、类型等信息。因此,索引库中就有映射(Mapping),是索引中文档的字段约束信息,类似表的结构约束。
MySQL 与 Elasticsearch 的对比
以下是 MySQL 与 Elasticsearch 中一些关键概念的对比:
MySQL | Elasticsearch | 说明 |
---|---|---|
Table | Index | 索引(Index)是文档的集合,类似数据库的表(Table) |
Row | Document | 文档(Document)是一条条的数据,类似数据库中的行(Row),文档都是 JSON 格式 |
Column | Field | 字段(Field)是 JSON 文档中的字段,类似数据库中的列(Column) |
Schema | Mapping | Mapping(映射)是索引中文档的约束,例如字段类型约束。类似数据库的表结构(Schema) |
SQL | DSL | DSL 是 Elasticsearch 提供的 JSON 风格的请求语句,用来操作 Elasticsearch,实现 CRUD |
是否可以完全替代 MySQL?
虽然 Elasticsearch 在搜索和分析方面表现出色,但它并不能完全替代 MySQL。两者各有擅长之处:
-
MySQL:擅长事务类型操作,可以确保数据的安全和一致性。
-
Elasticsearch:擅长海量数据的搜索、分析、计算。
在企业中,通常会结合使用两者:
-
对安全性要求较高的写操作,使用 MySQL 实现。
-
对查询性能要求较高的搜索需求,使用 Elasticsearch 实现。
-
两者再基于某种方式,实现数据的同步,保证一致性。
IK 分词器
Elasticsearch 的关键在于倒排索引,而倒排索引依赖于对文档内容的分词。分词是将文本数据分解为有意义的词条(Term)的过程。对于中文文本,由于中文没有像英文那样的自然分隔符(如空格),因此需要专门的中文分词算法。IK 分词器(IK Analyzer)就是这样一个高效、精准的中文分词工具。
安装 IK 分词器插件
IK 分词器是一个开源的中文分词插件,适用于 Elasticsearch。安装 IK 分词器可以显著提高中文文本的分词效果。以下是在 Windows 系统上安装 IK 分词器(IK Analyzer)的步骤:
方案一:在线安装
进入 Elasticsearch 容器:
运行以下命令进入正在运行的 Elasticsearch 容器:
docker exec -it es /bin/bash
安装 IK 分词器插件:
在容器内部运行以下命令来安装 IK 分词器插件:
bin/elasticsearch-plugin install https://github.com/medcl/elasticsearch-analysis-ik/releases/download/v7.12.1/elasticsearch-analysis-ik-7.12.1.zip
请注意,你需要将 7.12.1 替换为你正在使用的 Elasticsearch 版本号。
退出容器:
安装完成后,退出容器:
exit
重启 Elasticsearch 容器:
安装完成后,你需要重启 Elasticsearch 容器以使插件生效:
docker restart es
方案二:离线安装
下载 IK 分词器插件:
从 GitHub 页面下载 IK 分词器插件的压缩文件。
将插件文件上传到容器:
将下载的压缩文件上传到 Elasticsearch 容器的 /usr/share/elasticsearch/plugins 目录下。你可以使用 docker cp 命令来完成这个操作:
docker cp /path/to/elasticsearch-analysis-ik-7.12.1.zip es:/usr/share/elasticsearch/plugins/
进入 Elasticsearch 容器:
运行以下命令进入正在运行的 Elasticsearch 容器:
docker exec -it es /bin/bash
解压插件文件:
在容器内部解压插件文件:
cd /usr/share/elasticsearch/plugins
unzip elasticsearch-analysis-ik-7.12.1.zip
rm elasticsearch-analysis-ik-7.12.1.zip
退出容器:
解压完成后,退出容器:
exit
重启 Elasticsearch 容器:
安装完成后,你需要重启 Elasticsearch 容器以使插件生效:
docker restart es
IK分词器包含三种模式
- standard:标准分词器
- ik_smart:智能语义切分
- ik_max_word:最细粒度切分
首先,测试 Elasticsearch 官方提供的标准分词器:
POST /_analyze
{"analyzer": "standard","text": "我是中国人"
}
执行结果如下:
{"tokens" : [{"token" : "我","start_offset" : 0,"end_offset" : 1,"type" : "<IDEOGRAPHIC>","position" : 0},{"token" : "是","start_offset" : 1,"end_offset" : 2,"type" : "<IDEOGRAPHIC>","position" : 1},{"token" : "中","start_offset" : 2,"end_offset" : 3,"type" : "<IDEOGRAPHIC>","position" : 2},{"token" : "国","start_offset" : 3,"end_offset" : 4,"type" : "<IDEOGRAPHIC>","position" : 3},{"token" : "人","start_offset" : 4,"end_offset" : 5,"type" : "<IDEOGRAPHIC>","position" : 4}]
}
可以看到,标准分词器只能 1 字 1 词条,无法正确对中文做分词。
接下来,测试 IK 分词器的 ik_smart 模式:
POST /_analyze
{"analyzer": "ik_smart","text": "我是中国人"
}
执行结果如下:
{"tokens" : [{"token" : "我","start_offset" : 0,"end_offset" : 1,"type" : "CN_CHAR","position" : 0},{"token" : "是","start_offset" : 1,"end_offset" : 2,"type" : "CN_CHAR","position" : 1},{"token" : "中国人","start_offset" : 2,"end_offset" : 5,"type" : "CN_WORD","position" : 2}]
}
最后,测试 IK 分词器的 ik_max_word 模式:
POST /_analyze
{"analyzer": "ik_max_word","text": "我是中国人"
}
执行结果如下:
{"tokens" : [{"token" : "我","start_offset" : 0,"end_offset" : 1,"type" : "CN_CHAR","position" : 0},{"token" : "是","start_offset" : 1,"end_offset" : 2,"type" : "CN_CHAR","position" : 1},{"token" : "中国人","start_offset" : 2,"end_offset" : 5,"type" : "CN_WORD","position" : 2},{"token" : "中国","start_offset" : 2,"end_offset" : 4,"type" : "CN_WORD","position" : 3},{"token" : "国人","start_offset" : 3,"end_offset" : 5,"type" : "CN_WORD","position" : 4}]
}
IK 分词器的 ik_smart 模式适用于大多数场景,能够根据上下文进行智能分词;而 ik_max_word 模式则尽可能多地切分出词条,适用于需要更细粒度分词的场景。
拓展词典
进入容器后
cd /usr/share/elasticsearch/config/analysis-ik
ls
查看文件内容:
cat extra_main.dic
总结
分词器的作用是什么?
分词器在搜索引擎中有两个主要作用:
- 创建倒排索引时,对文档分词:在索引阶段,分词器将文档内容分解成一个个的词条(tokens),并将这些词条与文档关联起来,形成倒排索引。倒排索引是搜索引擎的核心数据结构,用于快速查找包含特定词条的文档。
- 用户搜索时,对输入的内容分词:在搜索阶段,分词器将用户输入的查询内容分解成一个个的词条,然后搜索引擎根据这些词条在倒排索引中查找匹配的文档。
IK 分词器有几种模式?
IK 分词器提供了两种分词模式:
- ik_smart:智能切分,粗粒度:ik_smart 模式会进行智能切分,通常会生成较少的词条,适用于需要较粗粒度分词的场景。
- ik_max_word:最细切分,细粒度:ik_max_word 模式会进行最细粒度的切分,尽可能生成更多的词条,适用于需要细粒度分词的场景。
IK 分词器如何拓展词条?如何停用词条?
IK 分词器可以通过配置文件 IKAnalyzer.cfg.xml 来拓展词条和停用词条。
拓展词条:
- 在 IKAnalyzer.cfg.xml 文件中,通过 <entry key="ext_dict"> 标签指定拓展词典文件的路径。
- 在拓展词典文件中添加你想要拓展的词条。
停用词条:
- 在 IKAnalyzer.cfg.xml 文件中,通过 <entry key="ext_stopwords"> 标签指定停用词典文件的路径。
- 在停用词典文件中添加你想要停用的词条。
示例配置
IKAnalyzer.cfg.xml 示例
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">
<properties><comment>IK Analyzer 扩展配置</comment><!-- 用户可以在这里配置自己的扩展字典 --><entry key="ext_dict">mydict.dic</entry><!-- 用户可以在这里配置自己的扩展停止词字典 --><entry key="ext_stopwords">stopword.dic</entry>
</properties>
自定义词典文件 mydict.dic 示例
自定义词汇1
自定义词汇2
停用词典文件 stopword.dic 示例
的
是
在
相关文章:

Elasticsearch学习笔记(1)
初识 Elasticsearch 认识和安装 Elasticsearch 是由 Elastic 公司开发的一套强大的搜索引擎技术,属于 Elastic 技术栈的一部分。完整的技术栈包括: Elasticsearch:用于数据存储、计算和搜索。Logstash/Beats:用于数据收集。Kib…...

react是一种语言?
React 不是一种编程语言,而是一种用于构建用户界面的 JavaScript 库。它由 Facebook 开发,并广泛用于开发单页应用程序(SPA)。React 允许你将 UI 拆分成独立的、可复用的组件,这些组件可以接收输入(称为“p…...

如何区分这个ip是真实ip,不是虚假的ip
区分一个IP地址是真实IP还是虚假IP(伪造IP)是非常重要的,特别是在网络安全、数据采集和其他与IP相关的业务场景中。虚假IP(也称为伪造IP或假冒IP)可以通过多种方式被创建,如代理、VPN、或IP欺骗(…...

【软件测试】详解软件测试中的测试级别
目录 一、测试级别二、组件测试三、开发者测试3.1测试与调试3.2 组件测试目标3.3 测试功能 四、稳健性测试4.1 效率的测试4.2 测试可维护性4.3 测试策略4.4 白盒测试 一、测试级别 软件系统通常是由许多子系统组成的,而这些子系统又是由多个组件组成的,…...

一条sql在MySQL中是怎么执行的
目录 一、MySQL总体架构二、各层的作用1、连接层2、应用层3、存储引擎层 一、MySQL总体架构 作为常问八股文,相信不少小伙伴当年都被问到过这个问题,回答这个问题我们首先得知道MySQL服务器基本架构,主要分为连接层,应用层和存储…...

Git | Dockerized GitLab 安装使用(简单实操版)
1. 详细步骤 1.1 安装启动 postgresql 服务 docker pull sameersbn/postgresql:14-20230628docker run --name gitlab-postgresql -d \--env DB_NAMEgitlabhq_production \--env DB_USERgitlab --env DB_PASSpassword \--env DB_EXTENSIONpg_trgm,btree_gist \--volume /srv/…...

SpringCloud简介 Ribbon Eureka 远程调用RestTemplate类 openfeign
〇、SpringCloud 0.区别于单体项目和soa架构,微服务架构每个服务独立,灵活。 1. spring cloud是一个完整的微服务框架,springCloud包括三个体系: spring cloud Netflix spring cloud Alibaba spring 其他 2.spring cloud 版本命名…...

微信小程序开发系列之-微信小程序性能优化
微信小程序开发系列之-微信小程序性能优化 性能优化是任何应用开发中的重要组成部分,尤其是在移动环境中。对于微信小程序而言,随着用户量的增加和应用功能的丰富,性能优化显得尤为关键。良好的性能不仅提升用户体验,还能增加用户…...

线程池面试集
目录 线程池中提交一个任务的流程是怎样的? 线程池有五种状态 如何优雅的停止一个线程? 线程池的核心线程数、最大线程数该如何设置? 如何理解Java并发中的可见性、原子性、有序性? Java死锁如何避免? 线程池中提交一个任务的流程是怎样的? 线程池有五种状态 如何优…...

从密码学看盲拍合约:智能合约的隐私与安全新革命!
文章目录 前言一、什么是盲拍合约?二、盲拍合约的优势1.时间压力的缓解2.绑定与秘密的挑战 三、盲拍合约的工作原理1.提交盲出价2.披露出价3.结束拍卖4.退款机制 四、代码示例总结 前言 随着区块链技术的发展,智能合约在各种场景中的应用越来越广泛。盲…...

c++学习笔记(47)
七、_public.cpp #include "_public.h" // 如果信号量已存在,获取信号量;如果信号量不存在,则创建它并初始化为 value。 // 如果用于互斥锁,value 填 1,sem_flg 填 SEM_UNDO。 // 如果用于生产消费者模型&am…...

软件设计之SSM(1)
软件设计之SSM(1) 路线图推荐: 【Java学习路线-极速版】【Java架构师技术图谱】 尚硅谷新版SSM框架全套视频教程,Spring6SpringBoot3最新SSM企业级开发 资料可以去尚硅谷官网免费领取 学习内容: Spring框架结构SpringIoC容器SpringIoC实践…...

STM32F745IE 能进定时器中断,无法进主循环
当你遇到STM32F745IE这类问题,即能够进入定时器中断但无法进入主循环(main() 函数中的循环),可能的原因和解决方法包括以下几个方面: 检查中断优先级和嵌套: 确保没有其他更高优先级的中断持续运行并阻止了主循环的执行。使用调试工具查看中断的进入和退出情况。检查中断…...

《凡人歌》中的IT职业启示录
《凡人歌》是由中央电视台、正午阳光、爱奇艺出品,简川訸执导,纪静蓉编剧,侯鸿亮任制片,殷桃、王骁领衔主演,章若楠、秦俊杰、张哲华、陈昊宇主演的都市话题剧 ,改编自纪静蓉的小说《我不是废柴》。该剧于2…...

go libreoffice word 转pdf
一、main.go 关键代码 完整代码 package mainimport ("fmt""github.com/jmoiron/sqlx""github.com/tealeg/xlsx""log""os/exec""path/filepath" ) import _ "github.com/go-sql-driver/mysql"import &q…...

打造双模兼容npm包:无缝支持require与import
为了实现一个npm包同时支持require和import,你需要确保你的包同时提供了CommonJS和ES6模块的入口点。这通常是通过在package.json文件中指定main和module字段来实现的,以及在构建过程中生成两种不同模块格式的文件。 以下是具体步骤: 设置pa…...

便捷将屏幕投射到安卓/iOS设备-屏幕投射到安卓/iOS设备,Windows/Mac电脑或智能电视上-供大家学习研究参考
1. 下载并安装软件(安卓苹果都需要) 确保 Android 设备和 Windows/Mac电脑都安装。启动应用程序并将 Android 设备和 Windows / Mac 了解到同一个wifi下面。 2、 发起投屏请求 在接收设备上:...

yolox训练自己的数据集
环境搭建 gpu按自己情况安装 nvidia-smi 查看自己的版本 CUDA和cudnn 按自己的安装,我的驱动551.76,注意不要用最新的,官网只要求驱动是大于等于,可以用低版本的cuda,我安装的是CUDA 11.1 cuda下载后,…...

Centos8.5.2111(1)之本地yum源搭建和docker部署与网络配置
由于后边可能要启动多个服务,避免服务之间相互干扰,本课程建议每个服务独立部署到一台主机上,这样做会导致资源占用过多,可能会影响系统的运行。服务器部署一般不采用GUI图形界面部署,而是采用命令行方式部署ÿ…...

基于SSM+小程序的自习室选座与门禁管理系统(自习室1)(源码+sql脚本+视频导入教程+文档)
👉文末查看项目功能视频演示获取源码sql脚本视频导入教程视频 1 、功能描述 1、管理员实现了首页、基础数据管理、论坛管理、公告信息管理、用户管理、座位管理等 2、用户实现了在论坛模块通过发帖与评论帖子的方式进行信息讨论,也能对账户进行在线充值…...

支付宝远程收款api之小荷包跳转码
想要生成小荷包跳转码的二维码,需要进行以下步骤: 1、开通支付宝小荷包的收款功能权限 2、获取支付宝的小荷包收款码和支付宝账户的UID已经手机号等相应信息(可能会有变动) 3、可能需要一定的代码基础,讲所需信息填…...

STM32 F1移植FATFS文件系统 USMART组件测试相关函数功能
STM32 F1移植FATFS文件系统 使用USMART调试组件测试相关函数功能 文章目录 STM32 F1移植FATFS文件系统 使用USMART调试组件测试相关函数功能前言部分主要相关代码# USMART介绍1. mf_scan_files 扫描磁盘文件2. mf_mount 挂载磁盘3. mf_open 打开文件4. mf_read 读数据内容5. mf…...

YOLOv8改进 | 融合篇,YOLOv8主干网络替换为MobileNetV3+CA注意机制+添加小目标检测层(全网独家首发,实现极限涨点)
原始 YOLOv8 训练结果: YOLOv8 + MobileNetV3改进后训练结果: YOLOv8 + MobileNetV3 + CA 注意机制 + 添加小目标检测层改进后训练结果(极限涨点): 摘要 小目标检测难点众多,导致很多算法对小目标的检测效果远不如大中型目标。影响算法性能的主要原因如下:第一,小目…...

深入探索机器学习中的目标分类算法
在当今数据驱动的世界中,机器学习(Machine Learning, ML)正逐渐成为解决问题的重要工具。在众多机器学习任务中,目标分类(Classification)算法尤其受到关注。本文将深入探讨目标分类算法的基本概念、常见类…...

一文上手SpringSecurity【七】
之前我们在测试的时候,都是使用的字符串充当用户名称和密码,本篇将其换成MySQL数据库. 一、替换为真实的MySQL 1.1 引入依赖 <dependency><groupId>mysql</groupId><artifactId>mysql-connector-java</artifactId><version>8.0.33</v…...

深圳龙链科技:全球区块链开发先锋,领航Web3生态未来
【深圳龙链科技】是全球领先的Web3区块链技术开发公司,专注于为全球客户提供创新高效的区块链解决方案。 深圳龙链科技由币安资深股东携手香港领先的Web3创新枢纽Cyberport联袂打造,立足于香港这一国际金融中心,放眼全球,汇聚了华…...

手写代码,利用 mnist 数据集测试对比 kan 和 cnn/mlp 的效果
你好呀,我是董董灿。 kan 模型火了一段时间,很多人从理论的角度给出了非常专业的解读,基本结论是:从目前来看,kan 很难替代 mlp 成为一个更加经典的模型结构。 我这里就不从理论方面进行回答了,直接给出一…...

基于Java+SQL Server2008开发的(CS界面)个人财物管理系统
一、需求分析 个人财务管理系统是智能化简单化个人管理的重要的组成部分。并且随着计算机技术的飞速发展,计算机在管理方面应用的旁及,利用计算机来实现个人财务管理势在必行。本文首先介绍了个人财务管理系统的开发目的,其次对个人财务管理…...

15年408计算机网络
第一题: 解析: 接收方使用POP3向邮件服务器读取邮件,使用的TCP连接,TCP向上层提供的是面向连接的,可靠的数据传输服务。 第二题: 解析:物理层-不归零编码和曼彻斯特编码 编码1:电平在…...

C++ const关键字
const 1. 修饰变量(包括函数参数 函数返回值) const int v0 10; v0 0; // error 不能修改const修饰的变量 2. 修饰指针 int v1 10; int v2 20; int v3 30; 2.1 常量指针 const 在指针左边,左定值,即不能通过指针修改该…...