[Day 82] 區塊鏈與人工智能的聯動應用:理論、技術與實踐
AI在風險控制中的應用案例
風險控制是企業管理中至關重要的一環,AI技術的引入為風險控制帶來了前所未有的自動化和智能化。無論是在金融、保險、製造業,還是網絡安全中,AI都能有效地分析和預測潛在風險。本文將探討AI在風險控制中的應用,並展示具體的代碼實現,幫助讀者理解AI如何在實際場景中輔助風險控制。
1. AI如何輔助風險控制
AI在風險控制中的應用範圍非常廣泛,以下是幾個主要領域:
- 金融風險控制:使用AI模型預測貸款違約、信用風險、金融市場波動等。
- 保險風險控制:通過AI分析客戶的行為和病史,預測保險詐騙和索賠風險。
- 網絡風險控制:AI可以實時監控網絡流量,識別潛在的安全威脅並快速反應。
- 供應鏈風險控制:AI可分析供應鏈數據,預測潛在的中斷或延誤風險。
這些應用場景背後,通常使用機器學習和深度學習模型進行數據分析、異常檢測和預測。接下來,我們將以金融風險控制為例,展示具體的實現過程。
2. 金融風險控制中的應用
在金融風險控制中,我們常見的應用是信用風險評估,AI可以根據歷史數據,預測某個客戶是否可能發生貸款違約。下面是一個完整的流程和代碼實現:
步驟 1: 數據準備
首先,我們需要準備一個歷史貸款數據集,包含客戶的年齡、收入、信用記錄等特徵,以及其貸款是否違約的標籤。
import pandas as pd# 加載數據集
data = pd.read_csv('loan_data.csv')# 查看數據的前5行
print(data.head())
這段代碼使用pandas
庫加載並查看貸款數據。數據集應包括特徵如年齡、收入、信用分數等,以及標籤欄位default
(1代表違約,0代表不違約)。
步驟 2: 數據清洗與預處理
在建模之前,必須對數據進行清洗和預處理,包括處理缺失值、標準化數據等。
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler# 刪除缺失值
data.dropna(inplace=True)# 提取特徵和標籤
X = data[['age', 'income', 'credit_score']]
y = data['default']# 拆分訓練集與測試集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# 標準化數據
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)
這裡我們使用train_test_split
將數據集拆分為訓練集和測試集,並用StandardScaler
進行標準化處理。標準化有助於加快模型訓練速度,並提高精度。
步驟 3: 構建與訓練模型
接下來,我們將使用隨機森林(Random Forest)模型來預測貸款違約情況。
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import classification_report# 創建隨機森林模型
model = RandomForestClassifier(n_estimators=100, random_state=42)# 訓練模型
model.fit(X_train, y_train)# 預測測試集
y_pred = model.predict(X_test)# 評估模型表現
print(classification_report(y_test, y_pred))
這段代碼展示了如何使用RandomForestClassifier
來訓練模型並進行預測。classification_report
提供了模型的準確率、召回率和F1分數,這是評估分類模型表現的常用指標。
步驟 4: 模型調參與優化
我們可以進一步調整隨機森林的參數,提升模型的預測能力。
from sklearn.model_selection import GridSearchCV# 設置參數範圍
param_grid = {'n_estimators': [50, 100, 200],'max_depth': [None, 10, 20, 30],'min_samples_split': [2, 5, 10]
}# 使用網格搜索尋找最佳參數
grid_search = GridSearchCV(RandomForestClassifier(random_state=42), param_grid, cv=5)
grid_search.fit(X_train, y_train)# 輸出最佳參數
print(grid_search.best_params_)# 使用最佳參數進行預測
best_model = grid_search.best_estimator_
y_pred_optimized = best_model.predict(X_test)# 評估優化後的模型表現
print(classification_report(y_test, y_pred_optimized))
這段代碼展示了如何使用GridSearchCV
進行模型調參,以找到最佳的參數組合。這可以顯著提高模型的精度和穩定性。
3. AI風險控制的異常檢測
另一個常見的應用是異常檢測,AI可用來識別異常行為或潛在風險。在網絡安全或交易監控中,這種技術被廣泛應用。下面我們使用Isolation Forest模型來檢測異常行為。
步驟 1: 訓練Isolation Forest模型
Isolation Forest是一種常用的異常檢測算法,適合用來找出交易數據中的異常模式。
from sklearn.ensemble import IsolationForest# 創建Isolation Forest模型
iso_forest = IsolationForest(contamination=0.01, random_state=42)# 訓練模型
iso_forest.fit(X_train)# 預測異常數據
y_pred_anomaly = iso_forest.predict(X_test)# 將異常結果轉換為可解讀格式
y_pred_anomaly = [1 if x == -1 else 0 for x in y_pred_anomaly]# 計算異常數據比例
anomaly_ratio = sum(y_pred_anomaly) / len(y_pred_anomaly)
print(f"異常交易比例: {anomaly_ratio * 100:.2f}%")
這段代碼展示了如何使用IsolationForest
模型進行異常檢測。contamination
參數設定了異常數據的比例。模型輸出中,-1
代表異常,1
代表正常。我們將異常結果轉換為0和1的格式,並計算異常比例。
步驟 2: 評估模型表現
我們可以通過混淆矩陣來評估異常檢測模型的表現。
from sklearn.metrics import confusion_matrix# 計算混淆矩陣
conf_matrix = confusion_matrix(y_test, y_pred_anomaly)# 輸出混淆矩陣
print("混淆矩陣:")
print(conf_matrix)
這段代碼使用confusion_matrix
函數來評估異常檢測的結果,提供了模型的預測準確性。混淆矩陣中的各個值代表模型正確和錯誤預測的數量。
4. 結論
AI在風險控制中的應用顯示出強大的潛力,無論是通過預測模型評估風險,還是通過異常檢測來發現潛在威脅,AI技術都能顯著提高風險控制的精度和效率。本文展示了如何使用Python和機器學習模型來實現金融風險控制和異常檢測的具體過程。隨著AI技術的不斷發展,其應用範圍也將更加廣泛。
通過這些技術,企業能夠提前預測風險、識別異常行為,從而做出更為明智的決策,降低潛在損失,提升整體運營效率。
相关文章:
[Day 82] 區塊鏈與人工智能的聯動應用:理論、技術與實踐
AI在風險控制中的應用案例 風險控制是企業管理中至關重要的一環,AI技術的引入為風險控制帶來了前所未有的自動化和智能化。無論是在金融、保險、製造業,還是網絡安全中,AI都能有效地分析和預測潛在風險。本文將探討AI在風險控制中的應用&…...
微信小程序map组件自定义气泡真机不显示
最近遇到一个需求需要使用uniapp的map自定义气泡 ,做完之后发现在模拟器上好好的,ios真机不显示,安卓页数时好时不好的 一番查询发现是小程序的老问题了,网上的方法都试了也没能解决 后来看到有人说用nvue可以正常显示,…...
数据结构之链表(2),双向链表
目录 前言 一、链表的分类详细 二、双向链表 三、双向链表的实现 四、List.c文件的完整代码 五、使用演示 总结 前言 接着上一篇单链表来详细说说链表中什么是带头和不带头,“哨兵位”是什么,什么是单向什么是双向,什么是循环和不循环。然后实…...
STL之list篇(下)(从底层分析实现list容器,逐步剥开list的外表)
文章目录 前言一、list的数据结构和类实现需求1.1 数据结构1.2 list类实现需求 二、list迭代器的实现2.1 为什么list不能直接把迭代器当作指针一样使用?2.2 list迭代器的框架设计2.3 *和-> 操作符的重载2.4 和-- 操作符的重载2.5 !和 操作符的重载 三、 list的函…...
视频去水印的3个技巧,教你无痕去水印
许多视频平台为了推广自身品牌或者广告用途,会在视频上添加水印。这些水印不仅影响了视频的美观,还可能限制了内容的传播范围。幸运的是,有几种简单而有效的方法可以帮助我们去除视频中的水印,同时保持视频的原始画质和观感。以下…...
LSTM模型改进实现多步预测未来30天销售额
关于深度实战社区 我们是一个深度学习领域的独立工作室。团队成员有:中科大硕士、纽约大学硕士、浙江大学硕士、华东理工博士等,曾在腾讯、百度、德勤等担任算法工程师/产品经理。全网20多万粉丝,拥有2篇国家级人工智能发明专利。 社区特色…...
八LAMP搭建
# LAMP ## 一、知识回顾 ### FTP samba nfs 特点 - 借用Linux用户作为映射用户,进行权限管理 - 软件本身还有管理控制权限 #### 客户端连接到服务器后进行读写执行等操作 ,必须同时具有: - 软件许可的权限 vsftpd: anon upload enableYES - 文件…...
Windows——解除Windows系统中文件名和目录路径的最大长度限制
第一步:打开本地组策略编辑器 按下Win R键打开运行窗口,输入 gpedit.msc 并回车,打开本地组策略编辑器。 第二步:开启 长路径设置 第三步:重启计算机...
黑名单与ip禁令是同一个东西吗
黑名单和IP禁令相关,但它们并不是完全相同的概念。以下是它们之间的区别: 黑名单 定义:黑名单通常是一个包含不允许或被禁止的用户、IP地址、域名或其他实体的列表。用途:用于阻止特定用户或实体访问某个系统或服务。黑名单可以…...
FuTalk设计周刊-Vol.075
国庆75周年,也是第75期周刊~ 祝大家国庆快乐~! #AI漫谈 热点捕手 1.万字深剖!13位AI巨擘联袂,1.6万字解码生成式AI产品「全攻略」 “生成式人工智能产品”主题论坛,邀请到了来自腾讯、商汤科…...
PE节表中是否存在misc.VirtualSize 比SizeofRawData还要大的情况
确实是存在的,这是win10自带记事本,可以看到 确实是大.所以在申请imagebuffer的时候,还是需要比较大小.但是在还原的时候.只考虑sizeofRawData即可>...
栈及笔试题
目录 栈的实现 1、数组栈 2、链式栈 栈的创建 栈的打印 内存泄漏 栈溢出 练习 有效的括号 栈的实现 栈后入先出 1、数组栈 (最佳实现,且访问数据的时候CPU告诉访存命中率比较高,因为地址连续存放,访问时CPU从cache里一…...
【工程测试技术】第3章 测试装置的基本特性,静态特性和动态特性,一阶二阶系统的特性,负载效应,抗干扰性
目录 3.1 概述 1测量装置的静态特性 2.标准和标准传递 3.测量装置的动态特性 4.测量装置的负载特性 5.测量装置的抗干扰性 1.线性度 2.灵敏度 3.回程误差 4.分辨力 5.零点漂移和灵敏度漂移 3.3.1 动态特性的数学描述 1.传递函数 2.频率响应函数 3.脉冲响应函数 …...
ireport 5.1 中文生辟字显示不出来,生成PDF报字体找不到
ireport生成pdf里文字不显示。本文以宋体中文字不显示为例。 问题:由浅入深一步一步分析 问题1、预览正常,但生成pdf中文不显示 报告模板编辑后,预览正常,但生成pdf中文不显示。以下是试验过程: 先编辑好一个报告单模…...
给Ubuntu虚拟机设置静态IP地址(固定IP)
查看 为Ubuntu虚拟机配置静态IP地址(固定IP)的方法经过亲自测试,已被证实有效。 这里你记得网关就可以了,等下要用 查看配置前的网络信息 ifconfig 查看网关 route -n 配置 配置网络文件 cd /etc/netplan/ ls 查看自己的文件的名…...
spring boot文件上传之x-file-storage
spring boot文件上传之x-file-storage 今天看到一个文件上传的开源组件x-file-storage,官方地址如下: https://x-file-storage.xuyanwu.cn/#/ 该组件官网是这样介绍的,如下: 一行代码将文件存储到本地、FTP、SFTP、WebDAV、阿…...
Object.values() 、 Object.keys()
拿到当前对象里面的value值 // 假设你有一个对象 const myObject {name: Kimi,age: 30,country: Moon };// 获取对象的所有值 const values Object.values(myObject);// 输出值数组 console.log(values); // ["Kimi", 30, "Moon"] 如果你需要在 Vue 组…...
脸爱云管理系统存在任意文件上传漏洞
漏洞描述 脸爱云一脸通智慧管理平台是一套功能强大、运行稳定、操作简单方便、用户界面美观的一脸通系统。该平台整合了人脸识别技术和智能化解决方案,可以实现识别和管理个体身份,为各种场景提供便捷的身份验证和管理功能。其存在任意文件上传漏洞&…...
elasticsearch_exporter启动报错 failed to fetch and decode node stats
最近把服务器迁移到了ubuntu系统,结果发现在centos还正常运行的elasticsearch_exporter,用systemd启动后一直报错 failed to fetch and decode node stats 在网上翻了大半年,竟然都无解!这种报错,很明显就是你的ES密码…...
Git 使用方法
简介 Git常用命令 Git 全局设置 获取Git 仓库 方法二用的比较多 将仓库链接复制 在 git base here ----> git clone 仓库链接 工作区、暂存区、版本库 Git 工作区中文件中的状态 本地仓库的操作 远程仓库操作 git pull 将代码推送到远程仓库 1. git add 文件名 ---放…...
生产环境升级mysql流程及配置主从服务
之前写到过mysql升级8.4的文章, 因此不再介绍mysql的安装过程 避免服务器安装多个mysql引起冲突的安装方法_安装两个mysql会冲突吗-CSDN博客 生产环境升级mysql8.4.x流程 安装mysql 参考之前文章: 避免服务器安装多个mysql引起冲突的安装方法_安装两个mysql会冲突吗-CSDN博客…...
论软件体系结构的演化
摘要 2022年3月,我加入了公司的新智慧公交平台项目研发团队,并担任系统架构师角色,负责系统整体架构的设计与评审。该项目采用了物联网三层架构模型,其中设备接入层和网络交互层基于公司的中台战略,我们有效复…...
【go入门】常量
目录 定义枚举iota思考题 定义 go语言常量的定义和其他语言类似,常量中的数据类型只能是布尔型,数字型(整型、浮点型、复数)和字符串型 常量的定义方式和变量一样,只不过变量定义使用 var 关键字,而常量定…...
2.1 HuggingFists系统架构(二)
部署架构 上图为HuggingFists的部署架构。从架构图可知,HuggingFists主要分为服务器(Server)、计算节点(Node)以及数据库(Storage)三部分。这三部分可以分别部署在不同的机器上,以满足系统的性能需求。为部署方便,HuggingFists社区版将这三部…...
工具类:JWT
工具类:JWT 依赖JwtUtil.java 依赖 <!-- 创建、解析 和 验证JSON Web Tokens (JWT)--><dependency><groupId>io.jsonwebtoken</groupId><artifactId>jjwt</artifactId><version>0.9.1</version></dependenc…...
王道-计网
2 采用滑动窗口机制对两个相邻结点A(发送方)和B(接收方)的通信过程进行流量控制。假定帧的序号长度为3比特,发送窗口与接收窗口的大小均为7,当A发送了编号为0、1、2、3这4个帧后,而B接收了这4个帧,但仅应答了0、1两个帧,A继续发送4、5两个帧,且这两个帧已进入B的接收…...
【机器学习(十)】时间序列案例之月销量预测分析—Holt-Winters算法—Sentosa_DSML社区版
文章目录 一、Holt-Winters算法原理(一) 加法模型(二) 乘法模型(三) 阻尼趋势 二、Holt Winters算法优缺点优点缺点 三、Python代码和Sentosa_DSML社区版算法实现对比(一) 数据读入和统计分析(二) 数据预处理(三) 模型训练和模型评估(四) 模型可视化 四、总结 一、Holt-Winters…...
Webpack优化问题
目录 打包流程swcthread-loaderhash升级插件 打包流程 webpack 的打包流程大致可以分为以下几个步骤: 初始化:webpack 通过配置文件和 Shell 参数,初始化参数,确定入口文件、输出路径、加 载器、插件等信息。接下来读取配置文件…...
yjs10——pandas的基础操作
1.pandas读入文件——pd.read_cvs() data pd.read_csv("E:/机器学习/data/salary.csv") 注意:1.是pd.read_cvs,不要顺手写成np.read_cvs 2.路径的斜杠方向是/,不是\,如果直接从电脑粘贴路径,路径写法是\&am…...
Squaretest单元测试辅助工具使用
1、idea安装插件 Squaretest 然后关掉idea 2、安装字节码软件(jclasslib) 3、找到idea里面的Squaretest安装目录 找到包含TestStarter的jar包 4、打开 com.squaretest.c.f 打开后选择常量池 5、找到第16个修改 Long value值,修改的数字即为使…...
做期货的一般看什么网站/湖南省人民政府官网
Pixelmator Pro中文版图像处理软件来啦,让人工智能更好地服务于图片编辑!!你会用它来处理图片吗?新的进化版本Pixelmator Pro Mac 激活版,拥有众多新功能,并且令人工智能在图像处理中发挥了更大的作用。将人…...
wordpress是哪家公司的建站程序/成都网站制作费用
一、背景知识Oralce中的一张表数据量达到亿数量级后或是单表达到2G大小,查询效率似乎会明显下降。需要通过分区的方式,从行的维度对表进行划分,避免单表数据量过大分区方法有下面几类:范围,最常见,按照某列…...
义乌市网站制作/全网优化哪家好
Android编程中,ScrollView嵌套ListView时,会无法正确的计算ListView的大小。解决的办法如下: (非原创,网上搜到的解决方法) public class MainActivity extends Activity { private ListView listView; …...
福州建设网站的公司/宣传平台有哪些
在IE6常见的断头程序和Peek-a-boo错误中,令人耳目一新的是,它仍然具有向您抛出真正独特和创意的功能。 这是我们今天上午在SitePoint封面上找到的一个新错误。 我知道的任何形式的功能文章的XHTML都不是特别出色: – DIV#feature设…...
做网上卖酒的网站有几家/seo模拟点击
H参数表示色彩信息,即所处的光谱颜色的位置。该参数用一角度量来表示,红、绿、蓝分别相隔120度。互补色分别相差180度。纯度S为一比例值,范围从0到1,它表示成所选颜色的纯度和该颜色最大的纯度之间的比率。S0时,只有灰…...
曲靖网站制作一条龙/百度云群组
转自:http://blog.chinaunix.net/space.php?uid22600159&doblog&id2124188 HAProxy提供高可用性、负载均衡以及基于TCP和HTTP应用的代理,支持虚拟主机,它是免费、快速并且可靠的一种解决方案。根据官方数据,其最高极限支…...