[Day 82] 區塊鏈與人工智能的聯動應用:理論、技術與實踐
AI在風險控制中的應用案例
風險控制是企業管理中至關重要的一環,AI技術的引入為風險控制帶來了前所未有的自動化和智能化。無論是在金融、保險、製造業,還是網絡安全中,AI都能有效地分析和預測潛在風險。本文將探討AI在風險控制中的應用,並展示具體的代碼實現,幫助讀者理解AI如何在實際場景中輔助風險控制。
1. AI如何輔助風險控制
AI在風險控制中的應用範圍非常廣泛,以下是幾個主要領域:
- 金融風險控制:使用AI模型預測貸款違約、信用風險、金融市場波動等。
- 保險風險控制:通過AI分析客戶的行為和病史,預測保險詐騙和索賠風險。
- 網絡風險控制:AI可以實時監控網絡流量,識別潛在的安全威脅並快速反應。
- 供應鏈風險控制:AI可分析供應鏈數據,預測潛在的中斷或延誤風險。
這些應用場景背後,通常使用機器學習和深度學習模型進行數據分析、異常檢測和預測。接下來,我們將以金融風險控制為例,展示具體的實現過程。
2. 金融風險控制中的應用
在金融風險控制中,我們常見的應用是信用風險評估,AI可以根據歷史數據,預測某個客戶是否可能發生貸款違約。下面是一個完整的流程和代碼實現:
步驟 1: 數據準備
首先,我們需要準備一個歷史貸款數據集,包含客戶的年齡、收入、信用記錄等特徵,以及其貸款是否違約的標籤。
import pandas as pd# 加載數據集
data = pd.read_csv('loan_data.csv')# 查看數據的前5行
print(data.head())
這段代碼使用pandas庫加載並查看貸款數據。數據集應包括特徵如年齡、收入、信用分數等,以及標籤欄位default(1代表違約,0代表不違約)。
步驟 2: 數據清洗與預處理
在建模之前,必須對數據進行清洗和預處理,包括處理缺失值、標準化數據等。
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler# 刪除缺失值
data.dropna(inplace=True)# 提取特徵和標籤
X = data[['age', 'income', 'credit_score']]
y = data['default']# 拆分訓練集與測試集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# 標準化數據
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)
這裡我們使用train_test_split將數據集拆分為訓練集和測試集,並用StandardScaler進行標準化處理。標準化有助於加快模型訓練速度,並提高精度。
步驟 3: 構建與訓練模型
接下來,我們將使用隨機森林(Random Forest)模型來預測貸款違約情況。
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import classification_report# 創建隨機森林模型
model = RandomForestClassifier(n_estimators=100, random_state=42)# 訓練模型
model.fit(X_train, y_train)# 預測測試集
y_pred = model.predict(X_test)# 評估模型表現
print(classification_report(y_test, y_pred))
這段代碼展示了如何使用RandomForestClassifier來訓練模型並進行預測。classification_report提供了模型的準確率、召回率和F1分數,這是評估分類模型表現的常用指標。
步驟 4: 模型調參與優化
我們可以進一步調整隨機森林的參數,提升模型的預測能力。
from sklearn.model_selection import GridSearchCV# 設置參數範圍
param_grid = {'n_estimators': [50, 100, 200],'max_depth': [None, 10, 20, 30],'min_samples_split': [2, 5, 10]
}# 使用網格搜索尋找最佳參數
grid_search = GridSearchCV(RandomForestClassifier(random_state=42), param_grid, cv=5)
grid_search.fit(X_train, y_train)# 輸出最佳參數
print(grid_search.best_params_)# 使用最佳參數進行預測
best_model = grid_search.best_estimator_
y_pred_optimized = best_model.predict(X_test)# 評估優化後的模型表現
print(classification_report(y_test, y_pred_optimized))
這段代碼展示了如何使用GridSearchCV進行模型調參,以找到最佳的參數組合。這可以顯著提高模型的精度和穩定性。
3. AI風險控制的異常檢測
另一個常見的應用是異常檢測,AI可用來識別異常行為或潛在風險。在網絡安全或交易監控中,這種技術被廣泛應用。下面我們使用Isolation Forest模型來檢測異常行為。
步驟 1: 訓練Isolation Forest模型
Isolation Forest是一種常用的異常檢測算法,適合用來找出交易數據中的異常模式。
from sklearn.ensemble import IsolationForest# 創建Isolation Forest模型
iso_forest = IsolationForest(contamination=0.01, random_state=42)# 訓練模型
iso_forest.fit(X_train)# 預測異常數據
y_pred_anomaly = iso_forest.predict(X_test)# 將異常結果轉換為可解讀格式
y_pred_anomaly = [1 if x == -1 else 0 for x in y_pred_anomaly]# 計算異常數據比例
anomaly_ratio = sum(y_pred_anomaly) / len(y_pred_anomaly)
print(f"異常交易比例: {anomaly_ratio * 100:.2f}%")
這段代碼展示了如何使用IsolationForest模型進行異常檢測。contamination參數設定了異常數據的比例。模型輸出中,-1代表異常,1代表正常。我們將異常結果轉換為0和1的格式,並計算異常比例。
步驟 2: 評估模型表現
我們可以通過混淆矩陣來評估異常檢測模型的表現。
from sklearn.metrics import confusion_matrix# 計算混淆矩陣
conf_matrix = confusion_matrix(y_test, y_pred_anomaly)# 輸出混淆矩陣
print("混淆矩陣:")
print(conf_matrix)
這段代碼使用confusion_matrix函數來評估異常檢測的結果,提供了模型的預測準確性。混淆矩陣中的各個值代表模型正確和錯誤預測的數量。
4. 結論
AI在風險控制中的應用顯示出強大的潛力,無論是通過預測模型評估風險,還是通過異常檢測來發現潛在威脅,AI技術都能顯著提高風險控制的精度和效率。本文展示了如何使用Python和機器學習模型來實現金融風險控制和異常檢測的具體過程。隨著AI技術的不斷發展,其應用範圍也將更加廣泛。
通過這些技術,企業能夠提前預測風險、識別異常行為,從而做出更為明智的決策,降低潛在損失,提升整體運營效率。
相关文章:
[Day 82] 區塊鏈與人工智能的聯動應用:理論、技術與實踐
AI在風險控制中的應用案例 風險控制是企業管理中至關重要的一環,AI技術的引入為風險控制帶來了前所未有的自動化和智能化。無論是在金融、保險、製造業,還是網絡安全中,AI都能有效地分析和預測潛在風險。本文將探討AI在風險控制中的應用&…...
微信小程序map组件自定义气泡真机不显示
最近遇到一个需求需要使用uniapp的map自定义气泡 ,做完之后发现在模拟器上好好的,ios真机不显示,安卓页数时好时不好的 一番查询发现是小程序的老问题了,网上的方法都试了也没能解决 后来看到有人说用nvue可以正常显示,…...
数据结构之链表(2),双向链表
目录 前言 一、链表的分类详细 二、双向链表 三、双向链表的实现 四、List.c文件的完整代码 五、使用演示 总结 前言 接着上一篇单链表来详细说说链表中什么是带头和不带头,“哨兵位”是什么,什么是单向什么是双向,什么是循环和不循环。然后实…...
STL之list篇(下)(从底层分析实现list容器,逐步剥开list的外表)
文章目录 前言一、list的数据结构和类实现需求1.1 数据结构1.2 list类实现需求 二、list迭代器的实现2.1 为什么list不能直接把迭代器当作指针一样使用?2.2 list迭代器的框架设计2.3 *和-> 操作符的重载2.4 和-- 操作符的重载2.5 !和 操作符的重载 三、 list的函…...
视频去水印的3个技巧,教你无痕去水印
许多视频平台为了推广自身品牌或者广告用途,会在视频上添加水印。这些水印不仅影响了视频的美观,还可能限制了内容的传播范围。幸运的是,有几种简单而有效的方法可以帮助我们去除视频中的水印,同时保持视频的原始画质和观感。以下…...
LSTM模型改进实现多步预测未来30天销售额
关于深度实战社区 我们是一个深度学习领域的独立工作室。团队成员有:中科大硕士、纽约大学硕士、浙江大学硕士、华东理工博士等,曾在腾讯、百度、德勤等担任算法工程师/产品经理。全网20多万粉丝,拥有2篇国家级人工智能发明专利。 社区特色…...
八LAMP搭建
# LAMP ## 一、知识回顾 ### FTP samba nfs 特点 - 借用Linux用户作为映射用户,进行权限管理 - 软件本身还有管理控制权限 #### 客户端连接到服务器后进行读写执行等操作 ,必须同时具有: - 软件许可的权限 vsftpd: anon upload enableYES - 文件…...
Windows——解除Windows系统中文件名和目录路径的最大长度限制
第一步:打开本地组策略编辑器 按下Win R键打开运行窗口,输入 gpedit.msc 并回车,打开本地组策略编辑器。 第二步:开启 长路径设置 第三步:重启计算机...
黑名单与ip禁令是同一个东西吗
黑名单和IP禁令相关,但它们并不是完全相同的概念。以下是它们之间的区别: 黑名单 定义:黑名单通常是一个包含不允许或被禁止的用户、IP地址、域名或其他实体的列表。用途:用于阻止特定用户或实体访问某个系统或服务。黑名单可以…...
FuTalk设计周刊-Vol.075
国庆75周年,也是第75期周刊~ 祝大家国庆快乐~! #AI漫谈 热点捕手 1.万字深剖!13位AI巨擘联袂,1.6万字解码生成式AI产品「全攻略」 “生成式人工智能产品”主题论坛,邀请到了来自腾讯、商汤科…...
PE节表中是否存在misc.VirtualSize 比SizeofRawData还要大的情况
确实是存在的,这是win10自带记事本,可以看到 确实是大.所以在申请imagebuffer的时候,还是需要比较大小.但是在还原的时候.只考虑sizeofRawData即可>...
栈及笔试题
目录 栈的实现 1、数组栈 2、链式栈 栈的创建 栈的打印 内存泄漏 栈溢出 练习 有效的括号 栈的实现 栈后入先出 1、数组栈 (最佳实现,且访问数据的时候CPU告诉访存命中率比较高,因为地址连续存放,访问时CPU从cache里一…...
【工程测试技术】第3章 测试装置的基本特性,静态特性和动态特性,一阶二阶系统的特性,负载效应,抗干扰性
目录 3.1 概述 1测量装置的静态特性 2.标准和标准传递 3.测量装置的动态特性 4.测量装置的负载特性 5.测量装置的抗干扰性 1.线性度 2.灵敏度 3.回程误差 4.分辨力 5.零点漂移和灵敏度漂移 3.3.1 动态特性的数学描述 1.传递函数 2.频率响应函数 3.脉冲响应函数 …...
ireport 5.1 中文生辟字显示不出来,生成PDF报字体找不到
ireport生成pdf里文字不显示。本文以宋体中文字不显示为例。 问题:由浅入深一步一步分析 问题1、预览正常,但生成pdf中文不显示 报告模板编辑后,预览正常,但生成pdf中文不显示。以下是试验过程: 先编辑好一个报告单模…...
给Ubuntu虚拟机设置静态IP地址(固定IP)
查看 为Ubuntu虚拟机配置静态IP地址(固定IP)的方法经过亲自测试,已被证实有效。 这里你记得网关就可以了,等下要用 查看配置前的网络信息 ifconfig 查看网关 route -n 配置 配置网络文件 cd /etc/netplan/ ls 查看自己的文件的名…...
spring boot文件上传之x-file-storage
spring boot文件上传之x-file-storage 今天看到一个文件上传的开源组件x-file-storage,官方地址如下: https://x-file-storage.xuyanwu.cn/#/ 该组件官网是这样介绍的,如下: 一行代码将文件存储到本地、FTP、SFTP、WebDAV、阿…...
Object.values() 、 Object.keys()
拿到当前对象里面的value值 // 假设你有一个对象 const myObject {name: Kimi,age: 30,country: Moon };// 获取对象的所有值 const values Object.values(myObject);// 输出值数组 console.log(values); // ["Kimi", 30, "Moon"] 如果你需要在 Vue 组…...
脸爱云管理系统存在任意文件上传漏洞
漏洞描述 脸爱云一脸通智慧管理平台是一套功能强大、运行稳定、操作简单方便、用户界面美观的一脸通系统。该平台整合了人脸识别技术和智能化解决方案,可以实现识别和管理个体身份,为各种场景提供便捷的身份验证和管理功能。其存在任意文件上传漏洞&…...
elasticsearch_exporter启动报错 failed to fetch and decode node stats
最近把服务器迁移到了ubuntu系统,结果发现在centos还正常运行的elasticsearch_exporter,用systemd启动后一直报错 failed to fetch and decode node stats 在网上翻了大半年,竟然都无解!这种报错,很明显就是你的ES密码…...
Git 使用方法
简介 Git常用命令 Git 全局设置 获取Git 仓库 方法二用的比较多 将仓库链接复制 在 git base here ----> git clone 仓库链接 工作区、暂存区、版本库 Git 工作区中文件中的状态 本地仓库的操作 远程仓库操作 git pull 将代码推送到远程仓库 1. git add 文件名 ---放…...
(LeetCode 每日一题) 3442. 奇偶频次间的最大差值 I (哈希、字符串)
题目:3442. 奇偶频次间的最大差值 I 思路 :哈希,时间复杂度0(n)。 用哈希表来记录每个字符串中字符的分布情况,哈希表这里用数组即可实现。 C版本: class Solution { public:int maxDifference(string s) {int a[26]…...
Mybatis逆向工程,动态创建实体类、条件扩展类、Mapper接口、Mapper.xml映射文件
今天呢,博主的学习进度也是步入了Java Mybatis 框架,目前正在逐步杨帆旗航。 那么接下来就给大家出一期有关 Mybatis 逆向工程的教学,希望能对大家有所帮助,也特别欢迎大家指点不足之处,小生很乐意接受正确的建议&…...
镜像里切换为普通用户
如果你登录远程虚拟机默认就是 root 用户,但你不希望用 root 权限运行 ns-3(这是对的,ns3 工具会拒绝 root),你可以按以下方法创建一个 非 root 用户账号 并切换到它运行 ns-3。 一次性解决方案:创建非 roo…...
Java 加密常用的各种算法及其选择
在数字化时代,数据安全至关重要,Java 作为广泛应用的编程语言,提供了丰富的加密算法来保障数据的保密性、完整性和真实性。了解这些常用加密算法及其适用场景,有助于开发者在不同的业务需求中做出正确的选择。 一、对称加密算法…...
多种风格导航菜单 HTML 实现(附源码)
下面我将为您展示 6 种不同风格的导航菜单实现,每种都包含完整 HTML、CSS 和 JavaScript 代码。 1. 简约水平导航栏 <!DOCTYPE html> <html lang"zh-CN"> <head><meta charset"UTF-8"><meta name"viewport&qu…...
图表类系列各种样式PPT模版分享
图标图表系列PPT模版,柱状图PPT模版,线状图PPT模版,折线图PPT模版,饼状图PPT模版,雷达图PPT模版,树状图PPT模版 图表类系列各种样式PPT模版分享:图表系列PPT模板https://pan.quark.cn/s/20d40aa…...
Springboot社区养老保险系统小程序
一、前言 随着我国经济迅速发展,人们对手机的需求越来越大,各种手机软件也都在被广泛应用,但是对于手机进行数据信息管理,对于手机的各种软件也是备受用户的喜爱,社区养老保险系统小程序被用户普遍使用,为方…...
Java 二维码
Java 二维码 **技术:**谷歌 ZXing 实现 首先添加依赖 <!-- 二维码依赖 --><dependency><groupId>com.google.zxing</groupId><artifactId>core</artifactId><version>3.5.1</version></dependency><de…...
GruntJS-前端自动化任务运行器从入门到实战
Grunt 完全指南:从入门到实战 一、Grunt 是什么? Grunt是一个基于 Node.js 的前端自动化任务运行器,主要用于自动化执行项目开发中重复性高的任务,例如文件压缩、代码编译、语法检查、单元测试、文件合并等。通过配置简洁的任务…...
FFmpeg:Windows系统小白安装及其使用
一、安装 1.访问官网 Download FFmpeg 2.点击版本目录 3.选择版本点击安装 注意这里选择的是【release buids】,注意左上角标题 例如我安装在目录 F:\FFmpeg 4.解压 5.添加环境变量 把你解压后的bin目录(即exe所在文件夹)加入系统变量…...
