当前位置: 首页 > news >正文

【cache】浅析四种常用的缓存淘汰算法 FIFO/LRU/LFU/W-TinyLFU

本文浅析淘汰策略与工作中结合使用、选取,并非针对算法本身如何实现的

文章目录

  • FIFO
  • LFU
  • LRU
  • W-TinyLFU
  • 实践与优化
    • 监控与调整

FIFO

first input first output , 先进先出,即最早存入的元素最先取出,

典型数据结构代表:Queue (队列)

优点:
是最简单直观的一种策略,
一般适用于随机访问、缓存的元素都是随机性或频率大致相等的;对于不常变化的数据,如配置文件、静态资源等,FIFO(先进先出)可能是一个简单且有效的选择。这些数据的访问频率通常较低,且不需要频繁更新,FIFO能确保缓存中的旧数据被定期清理,为新数据腾出空间。

缺点:对于访问频率高且经常变化的动态数据,如热点新闻等则不适用

在这里插入图片描述

LFU

least frequently used , 最不经常使用,即把最不经常使用的数据淘汰掉,粗略一听 是很符合逻辑的, 它可以很好的命中高访问频率数据;

我们可以假设一个场景,比如9:00秒杀手机,9:05秒杀笔记本,9:10正常开售平板,那么之前秒杀缓存的数据就显得很苍白无力,它频率确实是非常高,但由于后续业务变更(访问模式转变),变得不再那么需要访问。

LFU也能够有效的保护缓存,相对场景来说,比LRU有更好的缓存命中率。由于是以次数为基准,因此更加准确,天然能有效的保证和提升命中率。

所以LFU 优缺点总结如下:

优点:平稳业务场景来说,比LRU有更好的缓存命中率。由于是以次数为基准,因此更加准确,能有效的保证和提升命中率

缺点:由于LFU须要记录数据的访问频率,所以需要额外的空间;当访问模式改变(业务转变)的时候,算法命中率会急剧降低,这也是他最大弊端。

LRU

Least Recently Used,即最近最少使用,LRU认为 最近访问的数据 在接下来访问的频率也会更高,在平常业务中 LRU可以覆盖较广的范围

典型代表:mysql 缓冲池
mysql的缓冲池就是使用的LRU淘汰算法

我们可以看看一个简单的LRU实现方式:
来自jsonpath包下的源码: 如果值存在 就将它置顶
在这里插入图片描述
removeThenAddKey 方法如下:

   private void removeThenAddKey(String key) {this.lock.lock();try {this.queue.removeFirstOccurrence(key);this.queue.addFirst(key);} finally {this.lock.unlock();}}

W-TinyLFU

减少了LFU的内存占用,同时结合了LFU和LRU的特点,是一种比较不错的淘汰算法

典型容器代表:java中的Caffeine

maven:

        <dependency><groupId>com.github.ben-manes.caffeine</groupId><artifactId>caffeine</artifactId><!-- 检查是否有最新版本 --><version>3.1.8</version></dependency>

优点结合了LRU和LFU的特点,
缺点则是算法难度本身比较复杂 ,一般使用写好的开源组件,自己实现一个优秀的算法还是比较困难的

实践与优化

监控与调整

性能监控:定期监控缓存系统的性能指标,如命中率、缓存大小、访问延迟等,以便及时发现并解决问题。

策略调整:根据业务需求和监控结果,适时调整缓存淘汰策略。例如,在访问模式发生显著变化时,可以考虑切换淘汰策略或调整策略参数。

缓存预热:在系统启动或数据更新后,主动对缓存进行预热,即提前将预计会被频繁访问的数据加载到缓存中。这可以显著提高缓存命中率,减少数据访问延迟。

相关文章:

【cache】浅析四种常用的缓存淘汰算法 FIFO/LRU/LFU/W-TinyLFU

本文浅析淘汰策略与工作中结合使用、选取&#xff0c;并非针对算法本身如何实现的 文章目录 FIFOLFULRUW-TinyLFU实践与优化监控与调整 FIFO first input first output &#xff0c; 先进先出&#xff0c;即最早存入的元素最先取出&#xff0c; 典型数据结构代表&#xff1a;…...

STM32的DMA技术介绍

DMA&#xff08;Direct Memory Access&#xff0c;直接内存访问&#xff09; 是一种允许外设直接与系统内存进行数据传输&#xff0c;而无需经过CPU的技术。在STM32微控制器中&#xff0c;DMA技术极大地提高了数据传输效率&#xff0c;降低了CPU的负担&#xff0c;从而提升系统…...

C++11 多线程编程-小白零基础到手撕线程池

提示&#xff1a;文章 文章目录 前言一、背景二、 2.1 2.2 总结 前言 前期疑问&#xff1a; 本文目标&#xff1a; 一、背景 来源于b站视频 C11 多线程编程-小白零基础到手撕线程池 学习来源&#xff1a;https://www.bilibili.com/video/BV1d841117SH/?p2&spm_id_f…...

智源研究院与百度达成战略合作 共建AI产研协同生态

2024年9月24日&#xff0c;北京智源人工智能研究院&#xff08;简称“智源研究院”&#xff09;与北京百度网讯科技有限公司&#xff08;简称“百度”&#xff09;正式签署战略合作协议&#xff0c;双方将充分发挥互补优势&#xff0c;在大模型等领域展开深度合作&#xff0c;共…...

Flask-SQLAlchemy:在Flask应用中优雅地操作数据库

在Python的Web开发领域&#xff0c;Flask是一个备受欢迎的轻量级Web框架&#xff0c;它以简洁、灵活而著称。而当我们需要在Flask应用中与数据库进行交互时&#xff0c;Flask-SQLAlchemy就成为了一个强大而便捷的工具。它将Flask的简洁性与SQLAlchemy的强大数据库抽象能力完美结…...

智能巡检机器人 数据库

智能巡检机器人AI智能识别。无需人工。只需后台监控结果即可&#xff01;...

Spring AOP异步操作实现

在Spring框架中&#xff0c;AOP&#xff08;面向切面编程&#xff09;提供了一种非常灵活的方式来增强应用程序的功能。异步操作是现代应用程序中常见的需求&#xff0c;尤其是在处理耗时任务时&#xff0c;它可以帮助我们提高应用程序的响应性和吞吐量。Spring提供了一种简单的…...

【2006.07】UMLS工具——MetaMap原理深度解析

文献&#xff1a;《MetaMap: Mapping Text to the UMLS Metathesaurus》2006 年 7 月 14 日 https://lhncbc.nlm.nih.gov/ii/information/Papers/metamap06.pdf MetaMap&#xff1a;将文本映射到 UMLS 元数据库 总结 解决的问题 自动概念映射问题&#xff1a;解决如何将文本…...

ros2 colcon build 构建后,install中的local_setup.bash 和setup.bash有什么区别

功能概述 在 ROS2 中&#xff0c;colcon build是用于构建软件包的工具。构建完成后会生成install文件夹&#xff0c;其中的setup.bash和local_setup.bash文件都与环境设置相关&#xff0c;但存在一些区别。setup.bash 作用范围 setup.bash文件用于设置整个工作空间的环境变量。…...

Thymeleaf基础语法

Thymeleaf 是一种用于 Web 和非 Web 环境的现代服务器端 Java 模板引擎。它能够处理 HTML、XML、JavaScript、CSS 甚至纯文本。以下是 Thymeleaf 的一些基础语法&#xff1a; 1. 变量表达式 <!-- 显示变量的值 --> <p th:text"${name}">Default Name&l…...

spring cloud alibaba学习路线

以下是一条学习Spring Cloud Alibaba的路线&#xff1a; 一、基础前置知识 1. Java基础 熟练掌握Java语言特性&#xff0c;包括面向对象编程、集合框架、多线程等知识。 2. Spring和Spring Boot基础深入理解Spring框架&#xff0c;如依赖注入&#xff08;DI&#xff09;、控…...

基于 Seq2Seq 的中英文翻译项目(pytorch)

项目简介 本项目旨在使用 PyTorch 构建一个基于 Seq2Seq(编码器-解码器架构)的中英文翻译模型。我们将使用双语句子对的数据进行训练,最终实现一个能够将英文句子翻译为中文的模型。项目的主要步骤包括: 数据预处理:从数据集中提取英文和中文句子,并进行初步清洗和保存。…...

部标主动安全(ADAS+DMS)对接说明

1.前言 上一篇介绍了部标&#xff08;JT/T1078&#xff09;流媒体对接说明&#xff0c;这里说一下如何对接主动安全附件服务器。 流媒体的对接主要牵扯到4个方面&#xff1a; &#xff08;1&#xff09;平台端&#xff1a;业务端系统&#xff0c;包含前端呈现界面。 &#x…...

C++ STL(1)迭代器

文章目录 一、迭代器详解1、迭代器的定义与功能2、迭代器类型3、示例4、迭代器失效4.1、vector 迭代器失效分析4.2、list 迭代器失效分析4.3、set 与 map 迭代器失效分析 5、总结 前言&#xff1a; 在C标准模板库&#xff08;STL&#xff09;中&#xff0c;迭代器是一个核心概念…...

uview表单校验不生效问题

最近几次使用发现有时候会不生效&#xff0c;具体还没排查出来什么原因&#xff0c;先记录一下解决使用方法 <u--formlabelPosition"top"labelWidth"auto":model"form":rules"rules"ref"uForm" ><view class"…...

前端开发设计模式——单例模式

目录 一、单例模式的定义和特点&#xff1a; 1.定义&#xff1a; 2.特点&#xff1a; 二、单例模式的实现方式&#xff1a; 1.立即执行函数结合闭包实现&#xff1a; 2.ES6类实现&#xff1a; 三、单例模式的应用场景 1.全局状态管理&#xff1a; 2.日志记录器&#xff1a; …...

行情叠加量化,占据市场先机!

A股久违的3000点&#xff0c;最近都没有更新&#xff0c;现在终于对我们的市场又来点信息。相信在座的朋友这几天都是喜笑颜开&#xff0c;对A股又充满信心。当前行情好起来了&#xff0c;很多朋友又开始重回市场&#xff0c;研究股票学习量化&#xff0c;今天我们给大家重温下…...

大厂面试真题-ConcurrentHashMap怎么保证的线程安全?

ConcurrentHashMap是Java中的一个线程安全的哈希表实现&#xff0c;它通过一系列精妙的机制来保证线程安全。以下是ConcurrentHashMap保证线程安全的主要方式&#xff1a; 分段锁&#xff08;Segment Locking&#xff0c;Java 1.8之前&#xff09;&#xff1a; 在Java 1.8之前的…...

【RabbitMQ】消息堆积、推拉模式

消息堆积 原因 消息堆积是指在消息队列中&#xff0c;待处理的消息数量超过了消费者处理能力&#xff0c;导致消息在队列中不断堆积的现象。通常有以下几种原因&#xff1a; 消息生产过快&#xff1a;在高流量或者高负载的情况下&#xff0c;生产者以极高的速率发送消息&…...

MySQL常用SQL语句(持续更新中)

文章目录 数据库相关表相关索引相关添加索引 编码相关系统变量相关 收录一些经常用到的sql 数据库相关 建数据库 CREATE DATABASE [IF NOT EXISTS] <数据库名> [[DEFAULT] CHARACTER SET <字符集名>] [[DEFAULT] COLLATE <校对规则名>];例如&#xff1a; C…...

设计模式和设计原则回顾

设计模式和设计原则回顾 23种设计模式是设计原则的完美体现,设计原则设计原则是设计模式的理论基石, 设计模式 在经典的设计模式分类中(如《设计模式:可复用面向对象软件的基础》一书中),总共有23种设计模式,分为三大类: 一、创建型模式(5种) 1. 单例模式(Sing…...

大型活动交通拥堵治理的视觉算法应用

大型活动下智慧交通的视觉分析应用 一、背景与挑战 大型活动&#xff08;如演唱会、马拉松赛事、高考中考等&#xff09;期间&#xff0c;城市交通面临瞬时人流车流激增、传统摄像头模糊、交通拥堵识别滞后等问题。以演唱会为例&#xff0c;暖城商圈曾因观众集中离场导致周边…...

Frozen-Flask :将 Flask 应用“冻结”为静态文件

Frozen-Flask 是一个用于将 Flask 应用“冻结”为静态文件的 Python 扩展。它的核心用途是&#xff1a;将一个 Flask Web 应用生成成纯静态 HTML 文件&#xff0c;从而可以部署到静态网站托管服务上&#xff0c;如 GitHub Pages、Netlify 或任何支持静态文件的网站服务器。 &am…...

Qt Http Server模块功能及架构

Qt Http Server 是 Qt 6.0 中引入的一个新模块&#xff0c;它提供了一个轻量级的 HTTP 服务器实现&#xff0c;主要用于构建基于 HTTP 的应用程序和服务。 功能介绍&#xff1a; 主要功能 HTTP服务器功能&#xff1a; 支持 HTTP/1.1 协议 简单的请求/响应处理模型 支持 GET…...

python如何将word的doc另存为docx

将 DOCX 文件另存为 DOCX 格式&#xff08;Python 实现&#xff09; 在 Python 中&#xff0c;你可以使用 python-docx 库来操作 Word 文档。不过需要注意的是&#xff0c;.doc 是旧的 Word 格式&#xff0c;而 .docx 是新的基于 XML 的格式。python-docx 只能处理 .docx 格式…...

听写流程自动化实践,轻量级教育辅助

随着智能教育工具的发展&#xff0c;越来越多的传统学习方式正在被数字化、自动化所优化。听写作为语文、英语等学科中重要的基础训练形式&#xff0c;也迎来了更高效的解决方案。 这是一款轻量但功能强大的听写辅助工具。它是基于本地词库与可选在线语音引擎构建&#xff0c;…...

管理学院权限管理系统开发总结

文章目录 &#x1f393; 管理学院权限管理系统开发总结 - 现代化Web应用实践之路&#x1f4dd; 项目概述&#x1f3d7;️ 技术架构设计后端技术栈前端技术栈 &#x1f4a1; 核心功能特性1. 用户管理模块2. 权限管理系统3. 统计报表功能4. 用户体验优化 &#x1f5c4;️ 数据库设…...

【生成模型】视频生成论文调研

工作清单 上游应用方向&#xff1a;控制、速度、时长、高动态、多主体驱动 类型工作基础模型WAN / WAN-VACE / HunyuanVideo控制条件轨迹控制ATI~镜头控制ReCamMaster~多主体驱动Phantom~音频驱动Let Them Talk: Audio-Driven Multi-Person Conversational Video Generation速…...

小木的算法日记-多叉树的递归/层序遍历

&#x1f332; 从二叉树到森林&#xff1a;一文彻底搞懂多叉树遍历的艺术 &#x1f680; 引言 你好&#xff0c;未来的算法大神&#xff01; 在数据结构的世界里&#xff0c;“树”无疑是最核心、最迷人的概念之一。我们中的大多数人都是从 二叉树 开始入门的&#xff0c;它…...

《信号与系统》第 6 章 信号与系统的时域和频域特性

目录 6.0 引言 6.1 傅里叶变换的模和相位表示 6.2 线性时不变系统频率响应的模和相位表示 6.2.1 线性与非线性相位 6.2.2 群时延 6.2.3 对数模和相位图 6.3 理想频率选择性滤波器的时域特性 6.4 非理想滤波器的时域和频域特性讨论 6.5 一阶与二阶连续时间系统 6.5.1 …...