当前位置: 首页 > news >正文

探索后量子安全:基于格加密技术的未来密码学展望

在信息技术日新月异的今天,量子计算作为下一代计算技术的代表,正逐步从理论走向实践。量子计算的出现对现有的加密体系构成了严重威胁,尤其是基于大数分解和离散对数难题的传统密码学(如RSA和Diffie-Hellman协议)。为了应对这一挑战,科学家们提出了多种抗量子密码学方案,其中基于格的加密(Lattice-based Cryptography)因其独特的优势成为了后量子密码学的重要候选者。

什么是基于格的加密?

基于格的加密是一种利用数学中“格”(Lattice)结构的密码学方法。简单来说,格是向量空间中的一个离散子集,由一组基向量的所有整数线性组合构成。基于格的加密的安全性建立在格上的困难问题之上,特别是最短向量问题(Shortest Vector Problem, SVP)和最近向量问题(Closest Vector Problem, CVP)。这些问题在经典和量子计算中都表现出高度的复杂性,目前没有已知的有效算法能够高效解决。

为什么选择基于格的加密?
  1. 抗量子攻击:目前尚无已知的有效量子算法能解决格上的困难问题,这使得基于格的加密在量子计算时代具有显著的优势。
  2. 高效计算:格上的运算主要是矩阵和向量的乘积,计算过程相对简单且高效。
  3. 广泛应用:基于格的加密不仅可用于传统的加密和签名,还可以构建全同态加密、函数加密等复杂且强力的密码学应用。
Ring-LWE问题及其在加密中的应用

Ring-LWE(Learning with Errors over Rings)是格密码学中的一个重要原语,它是LWE(Learning with Errors)问题在环上的推广。Ring-LWE加密方案利用了一个单向性质:给定一个环元素a、一个噪声项e和另一个环元素s,计算as+e很容易,但从as+e中恢复s则非常困难。

Python代码示例:基于Ring-LWE的加密方案

以下是一个简化的基于Ring-LWE的加密方案的Python代码示例,实现了密钥生成、加密和解密的基本流程。

import numpy as np
from numpy.polynomial import polynomial as poly# 定义环上的参数
n = 16  # 环的维度
q = 12289  # 环上的模数
a = np.array([0, 1])  # 环上的不可约多项式 x + 1# 定义噪声分布
def sample_gaussian(n):return np.random.normal(0, 3.19, n).astype(int) % q# 定义环上多项式乘法运算
def ring_mul(x, y):return poly.polydiv(poly.polymul(x, y), a)[1] % q# 密钥生成
def keygen():s = sample_gaussian(n)  # 随机选择私钥se = sample_gaussian(n)  # 随机选择噪声eb = ring_mul(a, s) + e  # 计算公钥b = as + ereturn (b, s)# 加密函数
def encrypt(b, m):m = m % q  # 将明文消息转换为模q整数向量r = sample_gaussian(n)  # 随机选择掩码ru = ring_mul(a, r)  # 计算u = arv = ring_mul(b, r) + m  # 计算v = br + mreturn (u, v)# 解密函数
def decrypt(s, u, v):w = ring_mul(s, u)  # 计算w = suc = v - w  # 计算c = v - wreturn c % q# 示例使用
pk, sk = keygen()  # 生成公钥和私钥
msg = 65  # 明文消息
ct = encrypt(pk, msg)  # 加密
rec_msg = decrypt(sk, *ct)  # 解密
print(f"原始消息: {msg}, 解密后消息: {rec_msg}")
结论

基于格的加密以其抗量子性、高效性和广泛应用前景,在后量子密码学领域占据了重要地位。随着量子计算技术的不断发展,研究和推广基于格的加密技术将变得更加重要和迫切。希望通过本文的简单介绍,读者能对这一前沿领域有初步的了解和认识。

相关文章:

探索后量子安全:基于格加密技术的未来密码学展望

在信息技术日新月异的今天,量子计算作为下一代计算技术的代表,正逐步从理论走向实践。量子计算的出现对现有的加密体系构成了严重威胁,尤其是基于大数分解和离散对数难题的传统密码学(如RSA和Diffie-Hellman协议)。为了…...

WPF之UI进阶--完整了解wpf的控件和布局容器及应用

前面三篇有关WPF的基础介绍,分别介绍了wpf与winform的异同,wpf的事件生成和使用以及数据绑定。但我们还缺乏一副好的“皮囊”,所以从这篇开始我们来开始学习wpf的UI相关的内容,首当其冲的就是布局容器。 其实我们知道,…...

unity一键注释日志和反注释日志

开发背景:游戏中日志也是很大的开销,虽然有些日志不打印但是毕竟有字符串的开销,甚至有字符串拼接的开销,有些还有装箱和拆箱的开销,比如Debug.Log(1) 这种 因此需要注释掉,当然还需要提供反注释的功能&am…...

VBA数据库解决方案第十五讲:Recordset集合中单个数据的精确处理

《VBA数据库解决方案》教程(版权10090845)是我推出的第二套教程,目前已经是第二版修订了。这套教程定位于中级,是学完字典后的另一个专题讲解。数据库是数据处理的利器,教程中详细介绍了利用ADO连接ACCDB和EXCEL的方法…...

甄选范文“论软件需求管理”,软考高级论文,系统架构设计师论文

论文真题 软件需求管理是一个对系统需求变更了解和控制的过程。需求管理过程与需求开发过程相互关联,初始需求导出的同时就要形成需求管理规划,一旦启动了软件开发过程,需求管理活动就紧密相伴。 需求管理过程中主要包含变更控制、版本控制、需求跟踪和需求状态跟踪等4项活…...

Android Studio Dolphin 中Gradle下载慢的解决方法

我用的版本Android Studio Dolphin | 2021.3.1 Patch 1 1.Gradle自身的版本下载慢 解决办法:修改gradle\wrapper\gradle-wrapper.properties中的distributionUrl 将https\://services.gradle.org/distributions为https\://mirrors.cloud.tencent.com/gradle dis…...

Excel实现省-市-区/县级联

数据准备 准备省份-城市映射数据,如下: 新建sheet页,命名为:省-市数据源,然后准备数据,如下所示: 准备城市-区|县映射数据,如下: 新建sheet页,命名为&#x…...

【优化代码结构】函数的参数归一化

某些封装的函数,其参数具有多样性,会导致函数中会增加非常多的分支,比如下面这个 format 函数有如下几种参数方式,其中 formatter 会有很多种情况 date:日期对象formatter: ‘date’:格式化日期…...

CSS中height设置100vh和100%的区别

文章目录 CSS中height设置100vh和100%的区别一、引言二、高度设置的区别1、100%1.1、父元素高度固定1.2、父元素高度未定义 2、100vh2.1、视口高度2.2、不受父元素限制 三、总结 CSS中height设置100vh和100%的区别 一、引言 在前端开发中,我们经常需要设置元素的高…...

红米k60至尊版工程固件 MTK芯片 资源预览 刷写说明 与nv损坏修复去除电阻图示

红米k60至尊版机型代码为:corot。 搭载了联发科天玑9200+处理器。此固件mtk引导为MT6985。博文将简单说明此固件的一些特点与刷写注意事项。对于NV损坏的机型。展示修改校验电阻的图示。方便改写参数等 通过博文了解 1💝💝💝-----此机型工程固件的资源刷写注意事项 2…...

QEMU使用Qemu-Guest-Agent传输文件、执行指令等

简介 之前介绍过qemu传输文件,使用的挂载 / samba方式 :Qemu和宿主机不使用外网进行文件传输。 这是一种方式,这里还有另一种方式:使用Qemu-Guest-Agent,后面简称qga。 官网介绍:https://www.qemu.org/d…...

【漏洞复现】金和OA C6 GeneralXmlhttpPage.aspx Sql注入漏洞

免责声明: 本文旨在提供有关特定漏洞的信息,以帮助用户了解潜在风险。发布此信息旨在促进网络安全意识和技术进步,并非出于恶意。读者应理解,利用本文提到的漏洞或进行相关测试可能违反法律或服务协议。未经授权访问系统、网络或应用程序可能导致法律责任或严重后果…...

复数表示的电场

Exm加是复振幅,这是用复数表示电场,并提取只与空间有关的项复振幅就是复数表示电场,且把与空间xyz有关的量提取出来 经过验证实数E0cos(wtδx)对t求导,等于E0e^j(wtδx)对t求导再取实部 实数表示电磁波cos…...

常用快捷键整理

用加粗标注的是我个人使用时常用的,其实这个全凭个人喜好,大家可以熟悉一下自己喜欢的,都多试试,把觉得有用的记一下,多使用,后续写代码效率就会提高一些) 常用 VS 运行调试程序快捷键 编译 . 编译程序&a…...

【Transformer】长距离依赖

在自然语言处理(NLP)中,长距离依赖(Long-Range Dependencies)指的是在文本中相隔较远的两个或多个元素之间的依赖关系。这些依赖关系可以是语法上的,也可以是语义上的。例如,在句子中&#xff0…...

Git傻傻分不清楚(下)

进入Idea编译器 File -> New -> Project from Version Control -> URL (这个路径是要拉取项目的Github路径哦~) 设置成maven项目...

golang学习笔记27-反射【重要】

本节也是GO核心部分,很重要。包括基本类型的反射,结构体类型的反射,类别方法Kind(),修改变量的值。 目录 一、概念,基本类型的反射二、结构体类型的反射三、类别方法Kind()四、修改变量的值 一、概念,基本…...

利用Puppeteer-Har记录与分析网页抓取中的性能数据

引言 在现代网页抓取中,性能数据的记录与分析是优化抓取效率和质量的重要环节。本文将介绍如何利用Puppeteer-Har工具记录与分析网页抓取中的性能数据,并通过实例展示如何实现这一过程。 Puppeteer-Har简介 Puppeteer是一个Node.js库,提供…...

YOLOv5改进系列(1)——添加CBAM注意力机制

一、如何理解注意力机制 假设你正在阅读一本书,同时有人在你旁边说话。当你听到某些关键字时,比如“你的名字”或者“你感兴趣的话题”,你会自动把注意力从书上转移到他们的谈话上,尽管你并没有完全忽略书本的内容。这就是注意力机…...

无头单向非循环java版的模拟实现

【本节目标】 1.ArrayList的缺陷 2.链表 1. ArrayList的缺陷 上节课已经熟悉了 ArrayList 的使用&#xff0c;并且进行了简单模拟实现。通过源码知道&#xff0c; ArrayList 底层使用数组来存储元素&#xff1a; public class ArrayList<E> extends AbstractList<…...

conda相比python好处

Conda 作为 Python 的环境和包管理工具&#xff0c;相比原生 Python 生态&#xff08;如 pip 虚拟环境&#xff09;有许多独特优势&#xff0c;尤其在多项目管理、依赖处理和跨平台兼容性等方面表现更优。以下是 Conda 的核心好处&#xff1a; 一、一站式环境管理&#xff1a…...

【根据当天日期输出明天的日期(需对闰年做判定)。】2022-5-15

缘由根据当天日期输出明天的日期(需对闰年做判定)。日期类型结构体如下&#xff1a; struct data{ int year; int month; int day;};-编程语言-CSDN问答 struct mdata{ int year; int month; int day; }mdata; int 天数(int year, int month) {switch (month){case 1: case 3:…...

微软PowerBI考试 PL300-选择 Power BI 模型框架【附练习数据】

微软PowerBI考试 PL300-选择 Power BI 模型框架 20 多年来&#xff0c;Microsoft 持续对企业商业智能 (BI) 进行大量投资。 Azure Analysis Services (AAS) 和 SQL Server Analysis Services (SSAS) 基于无数企业使用的成熟的 BI 数据建模技术。 同样的技术也是 Power BI 数据…...

23-Oracle 23 ai 区块链表(Blockchain Table)

小伙伴有没有在金融强合规的领域中遇见&#xff0c;必须要保持数据不可变&#xff0c;管理员都无法修改和留痕的要求。比如医疗的电子病历中&#xff0c;影像检查检验结果不可篡改行的&#xff0c;药品追溯过程中数据只可插入无法删除的特性需求&#xff1b;登录日志、修改日志…...

【CSS position 属性】static、relative、fixed、absolute 、sticky详细介绍,多层嵌套定位示例

文章目录 ★ position 的五种类型及基本用法 ★ 一、position 属性概述 二、position 的五种类型详解(初学者版) 1. static(默认值) 2. relative(相对定位) 3. absolute(绝对定位) 4. fixed(固定定位) 5. sticky(粘性定位) 三、定位元素的层级关系(z-i…...

鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个生活电费的缴纳和查询小程序

一、项目初始化与配置 1. 创建项目 ohpm init harmony/utility-payment-app 2. 配置权限 // module.json5 {"requestPermissions": [{"name": "ohos.permission.INTERNET"},{"name": "ohos.permission.GET_NETWORK_INFO"…...

select、poll、epoll 与 Reactor 模式

在高并发网络编程领域&#xff0c;高效处理大量连接和 I/O 事件是系统性能的关键。select、poll、epoll 作为 I/O 多路复用技术的代表&#xff0c;以及基于它们实现的 Reactor 模式&#xff0c;为开发者提供了强大的工具。本文将深入探讨这些技术的底层原理、优缺点。​ 一、I…...

动态 Web 开发技术入门篇

一、HTTP 协议核心 1.1 HTTP 基础 协议全称 &#xff1a;HyperText Transfer Protocol&#xff08;超文本传输协议&#xff09; 默认端口 &#xff1a;HTTP 使用 80 端口&#xff0c;HTTPS 使用 443 端口。 请求方法 &#xff1a; GET &#xff1a;用于获取资源&#xff0c;…...

虚拟电厂发展三大趋势:市场化、技术主导、车网互联

市场化&#xff1a;从政策驱动到多元盈利 政策全面赋能 2025年4月&#xff0c;国家发改委、能源局发布《关于加快推进虚拟电厂发展的指导意见》&#xff0c;首次明确虚拟电厂为“独立市场主体”&#xff0c;提出硬性目标&#xff1a;2027年全国调节能力≥2000万千瓦&#xff0…...

论文阅读笔记——Muffin: Testing Deep Learning Libraries via Neural Architecture Fuzzing

Muffin 论文 现有方法 CRADLE 和 LEMON&#xff0c;依赖模型推理阶段输出进行差分测试&#xff0c;但在训练阶段是不可行的&#xff0c;因为训练阶段直到最后才有固定输出&#xff0c;中间过程是不断变化的。API 库覆盖低&#xff0c;因为各个 API 都是在各种具体场景下使用。…...