C++随心记
C++随心记
C++中的 CONST
C++中的const是表示不可修改
int main()
{/* 对于变量而言 */// 不可修改的常量const int A = 10;// 不可修改的指针指向const int* pointer_0 = nullptr;int const* poniter_1 = nullptr;// 不可修改指针指向的内容int* const poniter_2 = nullptr;
}
const也可修饰函数
class Entity
{
private:int* pointer;int x;
public:/* 对于函数而言 */// 修饰函数,使得其权限仅为读取,不可写入int GetX() const{// x++; 此语句是非法的,函数被const修饰后不准更改函数外的变量return x;}// 如果返回的为指针也可以用于修饰指针// 指向内容不可变int* const GetPoniter(){return pointer;}// 指向不可变const int* GetPointer(){return pointer;}// 一次性写最多的合法constconst int* const GetPointer() const{return pointer;}};
C++中的mutable
和上文的const一样,都是关键字,但mutable与const相反。mutable意味着可更改的。
class Entity
{
private:mutable int x;int y;
public:Entity(): x(10), y(20){}void ChangeXAndRead() const{x++;std::cout << "The value of X,Y is " << x << ',' << y << std::endl;// 这里的输出结果为11,20// 当试图修改y的值的时候,因为y的值为非mutable修饰,所以会报错}
};
C++中的成员初始化列表
在面向对象的语言中,多数程序员喜欢在构造器内初始化成员。在C++语法中,存在专门初始化成员的功能,此功能的优点是:避免了在定义成员时被构造,当我们定义一个变量时,如果这个变量为某个类的实例,那么在定义时会调用其构造器,当我们赋值时回再次调用构造器,这造成了性能的浪费。
class Entity
{
public:std::string x; // 此时调用了string的构造器Entity(){x = "Hello"; // 此时调用了"Hello"的构造器,并把地址给了x}
};// 下面是一个比较直观的例子
class Example
{
public:Exapmle(){std::cout << "Example created!" << std::endl; }Example(int x){std::cout << "Example created with x! x=" << x << std::endl; }
};class Entity
{
public:Example example;// 这里会输出Example created!Entity(){example = Example(8);// 这里会输出Example created with x! x=8}
};
这样就输出了两次,代表着调用了两次构造器。为了节省性能,我们可以使用成员初始化列表,语法如下
class Entity
{
private:std::string m_Name;int m_DebugCount;
public:Entity(const std::string& Name):m_Name(Name), m_DebugCount(0){}
};
上面写了一个有参构造器,参变量为常量引用的Name。重点是下面是成员初始化列表,用冒号隔开,冒号后为要初始化的成员,初始化的内容为后面的括号的内容。需要注意的是,成员初始化列表需要和成员变量的定义顺序相同,这一规则非严格规定,但不遵守此规则可能会导致部分成员变量无法初始化!每个成员变量之间用逗号隔开
delete的小注意
对于new出来的对象,要记得delete。要delete一块数组,要用delete[]
int main()
{int* a = new int[10];delete[] a; // To delete array areturn 0;
}
如果不使用delete[]的话,你删的只是指针所指的第一个元素而已。
C++的隐式类型转换
C++中的类型转换是自动的,甚至可以转换到类的构造器中,以下为实例。
class Entity
{
private:int m_Age;std::string m_Name;
public:Entity(const std::string& name):m_Age(-1), m_Name(name){std::cout << "Entity constructor with name has called!" << std::endl;}Entity(int age):m_Age(age), m_Name("Unknown"){std::cout << "Entity constructor with age has called!" << std::endl;}
};int main()
{Entity e1 = 12; // 隐式类型转换Entity e2 = std::string("Chreno");return 0;
}
explicit关键字
由于隐式转换是默认的,开发者不希望自己的构造函数被隐式转换就可以添加关键字explicit来强制构造器拒绝隐式转换。例如
class Entity
{
private:int m_Age;std::string m_Name;
public:Entity(const std::string& name):m_Age(-1), m_Name(name){std::cout << "Entity constructor with name has called!" << std::endl;}explicit Entity(int age):m_Age(age), m_Name("Unknown"){std::cout << "Entity constructor with age has called!" << std::endl;}
};int main()
{// Entity e1 = 12; // 此行由于构造器被explicit修饰故报错Entity e2 = std::string("Chreno");return 0;
}
C++中的运算符重载
浅谈一下重载问题,其实运算符最简单的四则运算无非就是加减乘除。我们在重载时只要跟编译器说明了这个函数就是在重载就好了,我们会用到operator标识一下我们重载的是运算符
struct Vector2
{float x, y;Vector2(float x, float y):x(x), y(y) {}// 运算符重载Vector2 operator+(const Vector2& other) const{return Vector2(x + other.x, y + other.y);}Vector2 operator-(const Vector2& other) const{return Vector2(x - other.x, y - other.y);}Vector2 operator*(const Vector2& other) const{return Vector2(x * other.x, y * other.y);}Vector2 operator/(const Vector2& other) const{return Vector2(x / other.x, y / other.y);}Vector2 Add(const Vector2& other) const{return Vector2(x + other.x, y + other.y);}Vector2 Multiply(const Vector2& other) const{return Vector2(x * other.x, y * other.y);}void printSelf(){std::cout << "Value of x:" << x << ",Value of y:" << y << std::endl;}
};int main()
{Vector2 position(4.0f, 4.0f);Vector2 speed(0.5f, 1.5f);Vector2 powerup(1.1f, 1.1f);Vector2 result = position.Add(speed.Multiply(powerup));Vector2 res = position + speed * powerup;result.printSelf();res.printSelf();// result equals resreturn 0;
}
再补充一点,我们可以重载ostream的<<运算符来达到输出内容的目的
#include <iostream>class Entity
{
public:int x, y;Entity(int x, int y):x(x), y(y){}};// 2、此时我们就需要重载一下运算符
std::ostream& operator<<(std::ostream& stream, const Entity& other)
{stream << other.x << ',' << other.y << std::endl;return stream;
}int main()
{Entity e(1, 2);// std::cout << e << std::endl; // 1、这里肯定不会输出其内容,而且也会报错// 3、然后我们再来使用这个运算符std::cout << e << std::endl;return 0;
}
C++智能指针
智能指针就是用std::unique_ptr<>来裹住一个对象,相对于原始指针,智能指针加了一层壳。将这个对象的栈和堆内存绑定,在跳出作用域时自动调用delete方法,语法见下
#include <iostream>
#include <memory>class Entity
{
public:int x, y;Entity(int x, int y):x(x), y(y){std::cout << "Entity created!" << std::endl;}~Entity(){std::cout << "Entity destory by itself" << std::endl;}};int main()
{{std::unique_ptr<Entity> entity = std::make_unique<Entity>(); // 就一次内存分配,更效率std::unique_ptr<Entity> e(new Entity(1, 2)); // 先Entity()构造分配一次内存,再给unique_ptr分内存}std::cout << "Program is going done~" << std::endl;return 0;
}
但是unique_ptr不能共享指针给别人,从原理上来说,这个对象被释放以后手握这个对象的指针也都会嗝屁,实际上需要同步。从源码上来看,=号这个运算符被重载了。
下面看一下shared_ptr,一个可以共享的智能指针
#include <iostream>
#include <memory>class Entity
{
public:int x, y;Entity(int x, int y):x(x), y(y){std::cout << "Entity created!" << std::endl;}~Entity(){std::cout << "Entity destory by itself" << std::endl;}void print(){std::cout << "The value of x:" << x << ",y:" << y << std::endl;}
};int main()
{std::shared_ptr<Entity> e;{std::shared_ptr<Entity> shared_entity = std::make_shared<Entity>(); // 性能缘由同上std::shared_ptr<Entity> shared_entity_new(new Entity(1, 2));e = shared_entity;}e->print();std::cout << "Program is going done~" << std::endl;return 0;
}
shared_ptr底层实现类似计数器,不分享的时候相当于在unique_ptr和计数器=0,分享一次就会计数器++。当计数器为0后,再结束生命周期就会delete这个对象本体(在堆上),否则只是释放了指针本身的内存(在栈上)。给weak_ptr分享不会增加计数器。
C++计算偏移量
计算偏移量在计算机图形学里比较多见,先写一下具体过程
#include <iostream>struct Vector3
{float x, y, z;
};int main()
{int offset = (int)&((Vector3*)nullptr)->y;std::cout << offset << std::endl;std::cin.get();return 0;
}
代码中offset就是偏移量。首先将0或者nullptr强制转化为结构体或类的指针,再去通过->调用指针就会根据偏移量偏移到目标的起始位置(这就是我们需要的值),之后取这个位置的地址(因为使用0或者nullptr作为起始地址所以不用再考虑起始地址)用&取地址(内存编号为偏移量),再通过(int)强制转换成整数就得到了偏移量
C++中优化std vector三个简单方法
我们先来写一段代码实验一下
#include <iostream>
#include <vector>struct Vertex
{float x, y, z;Vertex(float x, float y, float z): x(x), y(y), z(z){}// copy constructorVertex(const Vertex& vertex): x(vertex.x), y(vertex.y), z(vertex.z){std::cout << "Copied!" << std::endl;}
};int main()
{std::vector<Vertex> vertices;vertices.push_back({ 1, 2, 3 }); //1号语句vertices.push_back({ 4, 5, 6 }); //2号语句vertices.push_back({ 7, 8, 9 }); //3号语句return 0;
}
这段代码中我们规定:Vertex结构体,每当被复制后就向控制台输出
经过实际运行后,这段代码一共输出了 6 行Copied,说明在添加到vector时Vertex被复制了六次。以下是流程:执行到1号语句时vertices的承载力为0,产生新的vertices并将旧的vertices复制到新的vertices中此时输出1次Copied,到二号语句,承载力不够,接着出现新的容器,旧的vertices中已经有的Vertex和新的Vertex都会被复制到新的容器中,此时复制了两次,即输出两次Copied,以此类推三号语句输出了三次Copied,最后即输出了1+2+3次即6次Copied
这段过程看似在计算机强大算力前不复杂,但是当push_back次数多了以后复制次数就会爆炸式增长
解决方案 一
先告诉vector给留多少空间,避免了多次复制
#include <iostream>
#include <vector>struct Vertex
{float x, y, z;Vertex(float x, float y, float z): x(x), y(y), z(z){}// copy constructorVertex(const Vertex& vertex): x(vertex.x), y(vertex.y), z(vertex.z){std::cout << "Copied!" << std::endl;}
};int main()
{std::vector<Vertex> vertices;vertices.reserve(3); // 预留空间vertices.push_back(Vertex(1, 2, 3));vertices.push_back(Vertex(4, 5, 6));vertices.push_back(Vertex(7, 8, 9));return 0;
}
在这里通过reserve告诉vector给我留3个单位的空间,运行完毕后仅输出了 3 次Copied,即没有新的容器创建
解决方案 二
通过调用类或者结构体的构造器,函数括号内为构造器对应参数
#include <iostream>
#include <vector>struct Vertex
{float x, y, z;Vertex(float x, float y, float z): x(x), y(y), z(z){}// copy constructorVertex(const Vertex& vertex): x(vertex.x), y(vertex.y), z(vertex.z){std::cout << "Copied!" << std::endl;}
};int main()
{std::vector<Vertex> vertices;vertices.emplace_back(1, 2, 3);vertices.emplace_back(4, 5, 6);vertices.emplace_back(7, 8, 9);return 0;
}
此方法效率和法一相同,实现机制不同
解决方案 三(二 + 一)
预留好空间后再使用emplace不会产生任何复制(预留空间>=实际需求空间)
#include <iostream>
#include <vector>struct Vertex
{float x, y, z;Vertex(float x, float y, float z): x(x), y(y), z(z){}// copy constructorVertex(const Vertex& vertex): x(vertex.x), y(vertex.y), z(vertex.z){std::cout << "Copied!" << std::endl;}
};int main()
{std::vector<Vertex> vertices;vertices.reserve(3);vertices.emplace_back(1, 2, 3);vertices.emplace_back(4, 5, 6);vertices.emplace_back(7, 8, 9);return 0;
}
此示例Vertex类没有发生复制
相关文章:
C++随心记
C随心记 C中的 CONST C中的const是表示不可修改 int main() {/* 对于变量而言 */// 不可修改的常量const int A 10;// 不可修改的指针指向const int* pointer_0 nullptr;int const* poniter_1 nullptr;// 不可修改指针指向的内容int* const poniter_2 nullptr; }const也…...

【微服务即时通讯系统】——brpc远程过程调用、百度开源的RPC框架、brpc的介绍、brpc的安装、brpc使用和功能测试
文章目录 brpc1. brpc的介绍1.1 rpc的介绍1.2 rpc的原理1.3 grpc和brpc 2. brpc的安装3. brpc使用3.1 brpc接口介绍 4. brpc使用测试4.1 brpc同步和异步调用 brpc 1. brpc的介绍 1.1 rpc的介绍 RPC(Remote Procedure Call)远程过程调用,是一…...

鸿蒙开发(NEXT/API 12)【状态查询与订阅】手机侧应用开发
注意 该接口的调用需要在开发者联盟申请设备基础信息权限与穿戴用户状态权限,穿戴用户状态权限还需获得用户授权。 实时查询穿戴设备可用空间、电量状态。订阅穿戴设备连接状态、低电量告警、用户心率告警。查询和订阅穿戴设备充电状态、佩戴状态、设备模式。 使…...

vite中sass警告JS API过期
1.问题 在Vite创建项目中引入Sass弹出The legacy JS API is deprecated and will be removed in Dart Sass 2.0.0 - vite中sass警告JS API过期 The legacy JS API is deprecated and will be removed in Dart Sass 2.0.0警告提示表明你当前正在使用的 Dart Sass 版本中&#…...

睢宁自闭症寄宿学校:培养特殊孩子的未来
在自闭症儿童的教育与康复领域,每一所学校的努力都是对孩子们未来无限可能的一次深刻诠释。从江苏睢宁到广东广州,自闭症寄宿学校正以不同的方式,为这些特殊的孩子铺设一条通往未来的希望之路。其中,广州的星贝育园自闭症儿童寄宿…...

【Canvas与徽章】金圈蓝底国庆75周年徽章
【成图】 【代码】 <!DOCTYPE html> <html lang"utf-8"> <meta http-equiv"Content-Type" content"text/html; charsetutf-8"/> <head><title>金边黑盾75周年</title><style type"text/css"&g…...

Java Servlet 详解
Java Servlet 是 Java 企业级应用 中的一个核心组件,特别是在 Web 应用开发中,它为服务器端处理请求提供了基础。每次用户发出请求时,Servlet 都会动态生成响应,这在构建复杂、交互式的 Web 应用时尤为重要。 什么是 Servlet&am…...

yolov8/9/10模型在安全帽、安全衣检测中的应用【代码+数据集+python环境+GUI系统】
yolov8910模型安全帽、安全衣检测中的应用【代码数据集python环境GUI系统】 yolov8/9/10模型在安全帽、安全衣检测中的应用【代码数据集python环境GUI系统】 背景意义 安全帽和安全衣在工业生产、建筑施工等高风险作业环境中是保护工人免受意外伤害的重要装备。然而࿰…...

算力共享系统中数据平面和控制平面
目录 算力共享系统中数据平面和控制平面 数据平面 控制平面 算力共享系统举例 控制流程和业务流程,在算力共享系统中举例说明 控制流程 业务流程 算力共享系统中数据平面和控制平面 在算力共享系统中,数据平面和控制平面是两个关键组成部分,它们各自承担着不同的角色…...

C++语言学习(4): identifier 的概念
1. 什么是 identifier identifier 中文意思是标识符,在 cppreference 中明确提到,identifier 是任意长度的数字、下划线、大写字母、小写字母、unicode 字符 的序列: An identifier is an arbitrarily long sequence of digits, underscores…...
浅谈计算机神经网络基础与应用
1. 绪论 随着科技的飞速发展,人工智能(AI)已经逐渐渗透到我们生活的方方面面。作为AI技术的核心组成部分,神经网络在推动这一领域的发展上扮演着至关重要的角色。本报告旨在探讨AI中的不同类型神经网络及其在实际应用中的表现和影响。我们将从神经网络的基本概念入手,逐步…...

【SpringBoot详细教程】-08-MybatisPlus详细教程以及SpringBoot整合Mybatis-plus【持续更新】
目录 🌲 MyBatis Plus 简介 🌾入门案例 🌾 MP 简介 🌲 MP 的CRUD 🌾 新增 🌾 删除 🌾 修改在进行 🌾 根据ID查询 🌾 查询所有 🌲 分页功能 🌾 设置分页参数 🌾 设置分页拦截器 🌲 优化启动 🌾 取消mbatisPlusBanner 🌾 取消Sprin…...
[20241002] OpenAI融资文件曝光,ChatGPT年收入涨4倍,月费5年内翻倍
智东西9月29日消息,据《纽约时报》9月27日报道,OpenAI的内部文件显示,该公司在8月份的月收入达到3亿美元,自2023年初以来增长了1700%,预计今年年度销售额将达到37亿美元,其中ChatGPT将带来27亿美元的收入。…...

工业缺陷检测——Windows 10本地部署AnomalyGPT工业缺陷检测大模型
0. 引言 在缺陷检测中,由于真实世界样本中的缺陷数据极为稀少,有时在几千甚至几万个样品中才会出现一个缺陷数据。因此,以往的模型只需在正常样本上进行训练,学习正常样品的数据分布。在测试时,需要手动指定阈值来区分…...
单元测试进阶-Mock使用和插桩
目录 一、基本概念 1、Mock 2、插桩(Sutbbing) 二、参考文章 一、基本概念 1、Mock Mock的作用就是不直接new对象,而是使用Mock方法或者注解Mock一个对象。 这个对象他不是new创建的对象,Mock对该对象的一些成员变量和方法…...
适用conda安装虚拟的python3环境
由于jupyter notebook 7以上的版本与jupyter_contrib_nbextensions存在冲突,导致以前使用顺手的插件无法使用了,就考虑建立一个虚拟环境,在里面使用jupyter notebook 6,以便和jupyter_contrib_nbextensions兼容。 conda简介和优势 Conda 是一个包管理器和环境管理器,它不…...

【C++】“list”的介绍和常用接口的模拟实现
【C】“list”的介绍和常用接口的模拟实现 一. list的介绍1. list常见的重要接口2. list的迭代器失效 二. list常用接口的模拟实现(含注释)三. list与vector的对比 一. list的介绍 list是可以在常数范围内在任意位置进行插入和删除的序列式容器…...

第九篇——数列和级数(二):传销骗局的数学原理
目录 一、背景介绍二、思路&方案三、过程1.思维导图2.文章中经典的句子理解3.学习之后对于投资市场的理解4.通过这篇文章结合我知道的东西我能想到什么? 四、总结五、升华 一、背景介绍 文章不长,但是道理深刻;相邻两个数的差值…...
docker如何查看容器的ip
要查看Docker容器的IP地址,可以使用以下几种方法: 使用docker inspect命令: docker inspect -f {{range .NetworkSettings.Networks}}{{.IPAddress}}{{end}} <容器ID或名称> 使用docker ps和docker inspect组合: 首先查看正…...

Mysql ONLY_FULL_GROUP_BY模式详解、group by非查询字段报错
文章目录 一、问题报错二、ONLY_FULL_GROUP_BY模式2.1、什么是ONLY_FULL_GROUP_BY?2.2、为什么要使用ONLY_FULL_GROUP_BY?2.3、查看sql_mode 三、解决方法3.1、关闭only_full_group_by模式3.1.1、方法一:关闭当前会话中的only_full_group_by3…...

华为云AI开发平台ModelArts
华为云ModelArts:重塑AI开发流程的“智能引擎”与“创新加速器”! 在人工智能浪潮席卷全球的2025年,企业拥抱AI的意愿空前高涨,但技术门槛高、流程复杂、资源投入巨大的现实,却让许多创新构想止步于实验室。数据科学家…...

MMaDA: Multimodal Large Diffusion Language Models
CODE : https://github.com/Gen-Verse/MMaDA Abstract 我们介绍了一种新型的多模态扩散基础模型MMaDA,它被设计用于在文本推理、多模态理解和文本到图像生成等不同领域实现卓越的性能。该方法的特点是三个关键创新:(i) MMaDA采用统一的扩散架构…...
多模态商品数据接口:融合图像、语音与文字的下一代商品详情体验
一、多模态商品数据接口的技术架构 (一)多模态数据融合引擎 跨模态语义对齐 通过Transformer架构实现图像、语音、文字的语义关联。例如,当用户上传一张“蓝色连衣裙”的图片时,接口可自动提取图像中的颜色(RGB值&…...
【决胜公务员考试】求职OMG——见面课测验1
2025最新版!!!6.8截至答题,大家注意呀! 博主码字不易点个关注吧,祝期末顺利~~ 1.单选题(2分) 下列说法错误的是:( B ) A.选调生属于公务员系统 B.公务员属于事业编 C.选调生有基层锻炼的要求 D…...

04-初识css
一、css样式引入 1.1.内部样式 <div style"width: 100px;"></div>1.2.外部样式 1.2.1.外部样式1 <style>.aa {width: 100px;} </style> <div class"aa"></div>1.2.2.外部样式2 <!-- rel内表面引入的是style样…...

ElasticSearch搜索引擎之倒排索引及其底层算法
文章目录 一、搜索引擎1、什么是搜索引擎?2、搜索引擎的分类3、常用的搜索引擎4、搜索引擎的特点二、倒排索引1、简介2、为什么倒排索引不用B+树1.创建时间长,文件大。2.其次,树深,IO次数可怕。3.索引可能会失效。4.精准度差。三. 倒排索引四、算法1、Term Index的算法2、 …...
JDK 17 新特性
#JDK 17 新特性 /**************** 文本块 *****************/ python/scala中早就支持,不稀奇 String json “”" { “name”: “Java”, “version”: 17 } “”"; /**************** Switch 语句 -> 表达式 *****************/ 挺好的ÿ…...

自然语言处理——Transformer
自然语言处理——Transformer 自注意力机制多头注意力机制Transformer 虽然循环神经网络可以对具有序列特性的数据非常有效,它能挖掘数据中的时序信息以及语义信息,但是它有一个很大的缺陷——很难并行化。 我们可以考虑用CNN来替代RNN,但是…...

html-<abbr> 缩写或首字母缩略词
定义与作用 <abbr> 标签用于表示缩写或首字母缩略词,它可以帮助用户更好地理解缩写的含义,尤其是对于那些不熟悉该缩写的用户。 title 属性的内容提供了缩写的详细说明。当用户将鼠标悬停在缩写上时,会显示一个提示框。 示例&#x…...
iOS性能调优实战:借助克魔(KeyMob)与常用工具深度洞察App瓶颈
在日常iOS开发过程中,性能问题往往是最令人头疼的一类Bug。尤其是在App上线前的压测阶段或是处理用户反馈的高发期,开发者往往需要面对卡顿、崩溃、能耗异常、日志混乱等一系列问题。这些问题表面上看似偶发,但背后往往隐藏着系统资源调度不当…...