当前位置: 首页 > news >正文

算法笔记(五)——分治

文章目录

  • 算法笔记(五)——分治
  • 快排
    • 颜色分类
    • 排序数组
    • 数组中的第K个最大元素
    • 库存管理 III
  • 归并
    • 排序数组
    • 交易逆序对的总数
    • 计算右侧小于当前元素的个数
    • 翻转对

算法笔记(五)——分治

分治算法字面上的解释是“分而治之”,就是把一个复杂的问题分成两个或更多的相同或相似的子问题,再把子问题分成更小的子问题……直到最后子问题可以简单的直接求解,原问题的解即子问题的解的合并。这个技巧是很多高效算法的基础,如排序算法(快速排序,归并排序)…

分治策略是:对于一个规模为n的问题,若该问题可以容易地解决(比如说规模n较小)则直接解决,否则将其分解为k个规模较小的子问题,这些子问题互相独立且与原问题形式相同,递归地解这些子问题,然后将各子问题的解合并得到原问题的解。这种算法设计策略叫做分治法。

步骤

  • 分解:将原问题分解为若干个规模较小,相互独立,与原问题形式相同的子问题
  • 解决:若子问题规模较小而容易被解决则直接解,否则递归地解各个子问题
  • 合并:将各个子问题的解合并为原问题的解

经典的分治算法有二分搜索,归并排序,快速排序,。

快排

颜色分类

题目:颜色分类

在这里插入图片描述
思路

  • 初始化三个指针:
  • i遍历数组;
  • left左侧均为0
  • right右侧均为2
  • 遍历过程中遇到0swap(nums[++left],nums[i++])
  • 遇到1i++,不进行交换
  • 遇到2swap(nums[--right], nums[i])
  • 循环条件i < right

C++代码

class Solution 
{
public:void sortColors(vector<int>& nums) {for(int i = 0, left = -1, right = nums.size(); i < right; ){if(nums[i] == 0) swap(nums[++left], nums[i++]);else if(nums[i] == 1)i++;elseswap(nums[--right], nums[i]);}}
};

排序数组

题目:排序数组

在这里插入图片描述
思路

  • 我们将数组划分为三块,再来实现快排,将数组划分为三个部分:小于、等于、大于基准值;
  • <key,=key,>key

三路划分:减少重复元素的递归处理(相同元素过多的话,可以减小递归深度)、避免不必要的交换(将相同元素聚集在一起,避免了不必要的交换操作)

C++代码

class Solution 
{
public:int getKey(vector<int>& nums, int left, int right){return nums[rand() % (right - left + 1) + left];}void qsort(vector<int>& nums, int l, int r){if(l >= r) return;int key = getKey(nums, l, r);int i = l, left = l - 1, right = r + 1;while(i < right){if(nums[i] < key) swap(nums[++left], nums[i++]);else if(nums[i] == key) i++;else swap(nums[--right], nums[i]);}qsort(nums, l, left);qsort(nums, right, r);}vector<int> sortArray(vector<int>& nums) {srand(time(NULL));qsort(nums, 0, nums.size() - 1);return nums;}
};

数组中的第K个最大元素

题目:数组中的第K个最大元素

在这里插入图片描述

思路

常规解法,利用堆排,但时间复杂度不为O(N)

快速选择算法(快排)O(N)

  • 三路划分,将数组划分为三块;
  • 大于key的元素个数为c,等于key的元素个数为b,小于key元素个数为a
  • c >= k,则第k大元素在右侧,继续在右侧递归寻找第k大元素;
  • b + c >= k,则直接返回基准元素,即为第k大元素;
  • 若上述均不满足,则第k大元素在左侧,继续在左侧递归寻找第k大元素,此时k = k - b - c

C++代码

class Solution 
{
public:// 数组中获得随机值 int getKey(vector<int>& nums, int l, int r) {return nums[rand() % (r - l + 1) + l];}int qsort(vector<int>& nums, int l, int r, int k){if(l == r) return nums[l];// 随机选择基准元素int key = getKey(nums, l, r);// 根据基准元素将数组分为三块int i = l, left = l - 1, right = r + 1;while(i < right){if(nums[i] < key) swap(nums[++left], nums[i++]);else if(nums[i] == key) i++;else swap(nums[--right], nums[i]);}int b = right - 1 - (left + 1) + 1; // 等于key的数量int c = r - right + 1; // 大于key的数量if(c >= k) return qsort(nums, right, r, k);else if((b + c) >= k) return key;else return qsort(nums, l, left, k - b - c);}int findKthLargest(vector<int>& nums, int k)             {srand(time(NULL));return qsort(nums, 0, nums.size() - 1, k);}
};

库存管理 III

题目:库存管理 III

在这里插入图片描述
思路

和上题想法一致,使用快速选择的算法,使时间复杂度达到O(n)

C++代码


```class Solution 
{
public:void qsort(vector<int>& nums, int l, int r, int cnt){if(l >= r) return ;int key = nums[rand() % (r - l + 1) + l];int i = l, left = l - 1, right = r + 1;while(i < right){if(nums[i] < key) swap(nums[++left], nums[i++]);else if(nums[i] == key) i++;else swap(nums[--right], nums[i]);}int a = left - l + 1;int b = right - 1 - (left + 1) + 1;if(a >= cnt) qsort(nums, l, left, cnt);else if((a + b) >= cnt) return;else qsort(nums, right, r, cnt - a - b);}vector<int> inventoryManagement(vector<int>& stock, int cnt) {srand(time(NULL));qsort(stock, 0, stock.size() - 1, cnt);return {stock.begin(), stock.begin() + cnt};}
};

归并

排序数组

题目:排序数组

在这里插入图片描述C++代码

class Solution 
{// 归并vector<int> tmp;
public:void mergeSort(vector<int>& nums, int l, int r){if(l >= r) return ;// 计算中间位置int mid = (l + r) >> 1;// 对左右两部分进行归并排序mergeSort(nums, l, mid);mergeSort(nums, mid + 1, r);// 归并合并两个有序部分int i = l, j = mid + 1, k = 0;while(i <= mid && j <= r)tmp[k++] = (nums[i] <= nums[j]) ? nums[i++] : nums[j++];while(i <= mid) tmp[k++] = nums[i++];while(j <= r) tmp[k++] = nums[j++];// 拷贝回原数组for(int i = l; i <= r; i++){nums[i] = tmp[i - l];}} vector<int> sortArray(vector<int>& nums) {tmp.resize(nums.size());mergeSort(nums, 0, (int)nums.size() - 1);return nums;}
};

交易逆序对的总数

题目:交易逆序对的总数

在这里插入图片描述
思路
当我们将两个已排序的子数组合并成一个有序数组时,如果左侧子数组中的某个元素大于右侧子数组中的某个元素,那么左侧子数组中该元素之后的所有元素(包括该元素本身)都将与右侧子数组中的该元素形成逆序对。因此,我们可以通过计算这样的元素对数来统计逆序对的总数

C++代码

class Solution 
{int tmp[50010];
public:int reversePairs(vector<int>& record) {return mergeSort(record, 0, record.size() - 1);}int mergeSort(vector<int>& nums, int left, int right){if(left >= right) return 0; int ret = 0;// 中间,将数组分为两部分int mid = left + right >> 1;// [left, mid], [mid + 1, right]// 左边个数 + 排序 + 右边个数 + 排序ret += mergeSort(nums, left, mid);ret += mergeSort(nums, mid + 1, right);// 一左一右个数int cur1 = left, cur2 = mid + 1, i = 0;while(cur1 <= mid && cur2 <= right){if(nums[cur1] <= nums[cur2]){tmp[i++] = nums[cur1++];}else{ret += mid - cur1 + 1;  // 统计逆序对个数tmp[i++] = nums[cur2++];                }}// 处理剩余元素while (cur1 <= mid) tmp[i++] = nums[cur1++];while (cur2 <= right) tmp[i++] = nums[cur2++];// 拷贝回原数组for (int i = left; i <= right; ++i)nums[i] = tmp[i - left];return ret;}
};

计算右侧小于当前元素的个数

题目:计算右侧小于当前元素的个数

在这里插入图片描述
思路

这⼀道题的解法与求数组中的逆序对的解法是类似的,记录每⼀个元素的右边有多少个元素⽐⾃⼰⼩

归并排序的过程中,元素的下标是会跟着变化的,因此我们需要⼀个辅助数组,来将数组元素和对应的下标绑定在⼀起归并,也就是再归并元素的时候,顺势将下标也转移到对应的位置上

C++代码

class Solution 
{vector<int> ret;vector<int> index; // 记录当前元素的元素下标int tmpNums[500010];int tmpIndex[500010];
public:vector<int> countSmaller(vector<int>& nums) {int n = nums.size();ret.resize(n);  index.resize(n);// 初始化tmpIndexfor(int i = 0; i < n; i++)  index[i] = i; mergeSort(nums, 0, n - 1);return ret;}void mergeSort(vector<int>& nums, int left, int right){   if(left >= right) return ;// 根据中间元素划分区间int mid = (left + right) >> 1;// [left, mid]、[mid + 1, right]// 处理左右两部分mergeSort(nums, left, mid);mergeSort(nums, mid + 1, right);// 处理一左一右,降序数组int cur1 = left, cur2 = mid + 1, i = 0;while(cur1 <= mid && cur2 <= right){if(nums[cur1] <= nums[cur2]) {tmpNums[i] = nums[cur2];tmpIndex[i++] = index[cur2++];          }else {ret[index[cur1]] += right - cur2 + 1;tmpNums[i] = nums[cur1];tmpIndex[i++] = index[cur1++];  }}    // 处理剩余数组while(cur1 <= mid){tmpNums[i] = nums[cur1];tmpIndex[i++]=index[cur1++];}while(cur2 <= right){tmpNums[i] = nums[cur2];tmpIndex[i++]=index[cur2++];}// 还原for(int j = left; j <= right; j++){nums[j] = tmpNums[j - left];index[j] = tmpIndex[j - left];}}
};

翻转对

题目:翻转对

在这里插入图片描述
思路

翻转对和逆序对的定义⼤同⼩异,逆序对是前⾯的数要⼤于后⾯的数。⽽翻转对是前⾯的⼀个数要⼤于后⾯某个数的两倍。因此,我们依旧可以⽤归并排序的思想来解决这个问题

C++代码

class Solution 
{int tmp[50010];
public:int reversePairs(vector<int>& nums) {return mergeSort(nums, 0, nums.size() - 1);}int mergeSort(vector<int>& nums, int left, int right){if(left >= right) return 0;int ret = 0;int mid = (left + right) >> 1;ret += mergeSort(nums, left, mid);ret += mergeSort(nums, mid + 1, right);int cur1 = left, cur2 = mid + 1, i = left;while(cur1 <= mid) // 降序{while(cur2 <= right &&  nums[cur2] >= nums[cur1] / 2.0)cur2++;if(cur2 > right)break;ret += right - cur2 + 1;cur1++;}cur1 = left, cur2 = mid + 1;while(cur1 <= mid && cur2 <= right)tmp[i++] = nums[cur1] <= nums[cur2] ? nums[cur2++] : nums[cur1++];while(cur1 <= mid) tmp[i++] = nums[cur1++];while(cur2 <= right) tmp[i++] = nums[cur2++];for(int j = left; j <= right; j++)nums[j] = tmp[j];return ret;}
};

相关文章:

算法笔记(五)——分治

文章目录 算法笔记&#xff08;五&#xff09;——分治快排颜色分类排序数组数组中的第K个最大元素库存管理 III 归并排序数组交易逆序对的总数计算右侧小于当前元素的个数翻转对 算法笔记&#xff08;五&#xff09;——分治 分治算法字面上的解释是“分而治之”&#xff0c;就…...

多级侧边菜单(递归)

需要编写两个文件 aside-menu.vue 和 menu-item.vue menu-item.vue <script setup> defineOptions({name: MenuItem}) defineProps({menuList: Array}) </script><template><template v-for"menu of menuList"><!-- 如果当前有子菜单&a…...

JavaScript break与continue语句

break语句和continue语句都具有跳转作用&#xff0c;可以让代码不按既有的顺序执行。 break break语句用于跳出代码块或循环 for(i0;i<100;i){if(i5){break;}console.log(i);} continue continue语句用于应即终止本轮循环,返回循环结构的头部&#xff0c;开始下一轮循环。…...

算法【从递归入手一维动态规划】

动态规划&#xff1a;用空间代替重复计算&#xff0c;包含一整套原理和技巧的总和。后面会有非常多的文章介绍动态规划。 有些递归在展开计算时&#xff0c;总是重复调用同一个子问题的解&#xff0c;这种重复调用的递归变成动态规划很有收益。如果每次展开都是不同的解&#…...

Linux中的进程间通信之共享内存

共享内存 共享内存示意图 共享内存数据结构 struct shmid_ds {struct ipc_perm shm_perm; /* operation perms */int shm_segsz; /* size of segment (bytes) */__kernel_time_t shm_atime; /* last attach time */__kernel_time_t shm_dtime; /* last detach time */__kerne…...

第18周 3-过滤器

过滤器&#xff08;Filter&#xff09;概念总结 什么是过滤器 过滤器&#xff08;Filter&#xff09;是Java Web应用中用于统一拦截和处理请求的组件&#xff0c;类似于现实生活中的空气净化器或安检。它通过对请求进行前置处理&#xff0c;确保请求符合特定要求。 过滤器的…...

Linux之进程概念

作者主页&#xff1a; 作者主页 本篇博客专栏&#xff1a;Linux专栏 创作时间 &#xff1a;2024年9月28日 基本概念&#xff1a; 进程说白了其实就是一个程序的执行实例&#xff0c;正在执行的程序。 在内核层面来说&#xff0c;就是一个担当分配资源&#xff08;CPU时间…...

小程序-使用npm包

目录 Vant Weapp 安装 Vant 组件库 使用 Vant 组件 定制全局主题样式 API Promise化 1. 基于回调函数的异步 API 的缺点 2. 什么是 API Promise 化 3. 实现 API Promise 化 4.调用 Promise 化之后的异步 API 小程序对 npm 的支持与限制 目前&#xff0c;小程序中已经…...

【springboot】整合沙箱支付

目录 1. 配置沙箱应用环境2. 配置springboot项目1. 引入依赖2. 配置文件注册下载ngrok 3. 创建支付宝支付服务类4. 支付界面模板5. 控制类实现支付6. 测试 1. 配置沙箱应用环境 使用支付宝账号登录到开放平台控制台。 使用支付宝登录后&#xff0c;看到以下页面&#xff0c;下…...

技术速递|Python in Visual Studio Code 2024年9月发布

排版&#xff1a;Alan Wang 我们很高兴地宣布将于 2024 年 9 月发布适用于 Visual Studio Code 的 Python 和 Jupyter 扩展&#xff01; 此版本包括以下公告&#xff1a; Django 单元测试支持使用 Pylance 从 inlay 提示转到定义 如果您有兴趣&#xff0c;可以在我们的 Pyth…...

数据结构-3.5.队列的顺序实现

一.队列的顺序实现&#xff0c;初始化操作以及判断队列是否为空&#xff1a; 1.图解&#xff1a; 2.代码&#xff1a; #include<stdio.h> #define MaxSize 10 //定义一个队列最多存储的元素个数 ​ typedef struct {int data[MaxSize]; //用静态数组存放队列元素int f…...

preconnect 预解析

preconnect 是一种浏览器优化技术&#xff0c;用于告诉浏览器提前与指定的域名建立连接&#xff0c;包括DNS解析、TCP握手和TLS协商&#xff08;如果适用&#xff09;。这样做可以减少客户端在请求资源时所需的往返时间&#xff08;RTT&#xff09;&#xff0c;从而提高页面加载…...

Leecode热题100-283.移动零

给定一个数组 nums&#xff0c;编写一个函数将所有 0 移动到数组的末尾&#xff0c;同时保持非零元素的相对顺序。 请注意 &#xff0c;必须在不复制数组的情况下原地对数组进行操作。 示例 1: 输入: nums [0,1,0,3,12] 输出: [1,3,12,0,0]示例 2: 输入: nums [0] 输出: […...

如何高效使用Prompt与AI大模型对话

一、如何与人工智能对话 在人工智能的世界里&#xff0c;提示词&#xff08;Prompt&#xff09;就像是一把钥匙&#xff0c;能够解锁AI智能助手的潜力&#xff0c;帮助你更高效地获取信息、解决问题。但如何正确使用这把钥匙&#xff0c;却是一门艺术。本文将带你了解提示词的…...

Java 之深入理解 String、StringBuilder、StringBuffer

前言 由于发现 String、StringBuilder、StringBuffer 面试的时候会经常问到&#xff0c;这里就顺便总结一下&#xff1a;本文重点会以这三个字符串类的性能、线程安全、存储结构这三个方面进行分析 ✨上期回顾&#xff1a;Java 哈希表 ✨目录 前言 String 介绍 String 的不可变…...

vue3项目执行pnpm update后还原package.json文件后运行报错

项目场景&#xff1a; vue官方版本已更新到vue3.5&#xff0c;项目中还在使用vue3.4&#xff0c;因此想要更新项目vue版本。 问题描述 执行了 pnpm update 命令&#xff0c;一键更新了所有包&#xff0c;更新完成后项目不能正常运行。为了还原项目代码&#xff0c;先删除 nod…...

蓝桥杯【物联网】零基础到国奖之路:十七. 扩展模块之单路ADC和NE555

蓝桥杯【物联网】零基础到国奖之路:十七. 扩展模块之单路ADC和NE555 第一节 硬件解读第二节 CubeMx配置第三节 代码1&#xff0c;脉冲部分代码2&#xff0c;ADC部分代码![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/57531a4ee76d46daa227ae0a52993191.png) 第一节 …...

SolveigMM Video Splitter方便快捷视频分割合并软件 V3.6.1309.3-供大家学习研究参考

视频分割功能(Splitter)支持各种编码格式的AVI(DivX、DV、MJPEG、XVID、MPEG-4)、WMV、ASF(DivX、MJPEG、XVID、MPEG-4、WM Video 7/9)F、MPEG(*.mpg、*.mpeg、*.mpv、*.m2v、*.vob)文件、也支持受损的WMV、ASF格式的分割。视频合并功能(Joiner)则支持AVI、WMV/ASF、WMA、MP3、…...

Unity3D 创建一个人物,实现人物的移动

1&#xff0c;创建项目 首先打开我们的Unity Hub 在我们的编译器下面新建项目&#xff0c;选择3D模板&#xff0c;更改一下我们的项目名称&#xff0c;选择一下路径&#xff0c;然后点击创建项目 等待项目创建。。。。。。 我们在项目里先创建一个plane&#xff0c;这样有点视…...

【笔记】数据结构12

文章目录 2013年408应用题41方法一方法二 看到的社区的一个知识总结&#xff0c;这里记录一下。 知识点汇总 2013年408应用题41 解决方法&#xff1a; 方法一 &#xff08;1&#xff09;算法思想 算法的策略是从前向后扫描数组元素&#xff0c;标记出一个可能成为主元素的元…...

django的URL配置

1 django如何处理一个请求 首先Django要使用根URLconf模块&#xff0c;通过setting.py配置文件的ROOT_URLCONF来设置。 加载该模块后并查找变量 urlpatterns。这是一个Python的django.conf.urls.url()实例列表。 Django按顺序运行每个URL模式&#xff0c;并在匹配所请求的…...

精华帖分享 | 因子构建思考1

本文来源于量化小论坛股票量化板块精华帖&#xff0c;作者为z-coffee。 以下为精华帖正文&#xff1a; 一段时间没写帖子&#xff0c;其实一直在研究策略&#xff0c;只是从不同的角度去思考而已。熟悉我的老板其实清楚&#xff0c;我的炉子水平一般&#xff0c;基本不太依托…...

kubernetes笔记(四)

一、Pod调度策略 1.基于节点的调度 spec->nodeName [rootmaster ~]# vim myhttp.yaml --- kind: Pod apiVersion: v1 metadata:name: myhttp spec:nodeName: node-0001 # 基于节点名称进行调度containers:- name: apacheimage: myos:httpd[rootmaster ~]# kubectl a…...

通信工程学习:什么是SNMP简单网络管理协议

SNMP&#xff1a;简单网络管理协议 SNMP&#xff08;Simple Network Management Protocol&#xff0c;简单网络管理协议&#xff09;是一种用于在计算机网络中管理网络节点&#xff08;如服务器、工作站、路由器、交换机等&#xff09;的标准协议。它属于OSI模型的应用层&#…...

ubuntu20.04系统下,c++图形库Matplot++配置

linux下安装c图形库Matplot&#xff0c;使得c可以可视化编程&#xff1b;安装Matplot之前&#xff0c;需要先安装一个gnuplot&#xff0c;因为Matplot是依赖于此库 gnuplot下载链接&#xff1a; http://www.gnuplot.info/ 一、gnuplot下载与安装(可以跳过&#xff0c;下面源码…...

[激光原理与应用-126]:南京科耐激光-激光焊接 - 焊中无损检测技术 - 智能制程监测系统IPM介绍 - 26- 频域分析法

目录 一、什么是频域分析法 1、定义 2、基本原理 3、分析步骤 4、应用领域 5、优缺点 二、频域分析法在激光焊接故障监测中的应用 2.1 概述 1、应用背景 2、频域分析法的应用 3、应用优势 4、应用实例 2.2 激光焊接故障检测中光电信号的频谱特征 1、光电信号分类…...

深入理解 Solidity 修饰符(Modifier):功能、应用与最佳实践

1. 什么是修饰符&#xff08;Modifier&#xff09;&#xff1f; 1.1 修饰符的定义 在 Solidity 中&#xff0c;修饰符&#xff08;Modifier&#xff09;是一种用于更改函数行为的关键字。它们可以用于控制函数的执行条件、添加前置检查、简化重复逻辑等。修饰符在函数执行之前…...

YOLO11项目实战1:道路缺陷检测系统设计【Python源码+数据集+运行演示】

一、项目背景 随着城市化进程的加速和交通网络的不断扩展&#xff0c;道路维护成为城市管理中的一个重要环节。道路缺陷&#xff08;如裂缝、坑洞、路面破损等&#xff09;不仅影响行车安全&#xff0c;还会增加车辆的磨损和维修成本。传统的道路缺陷检测方法主要依赖人工巡检…...

怎么屏蔽统计系统统计到的虚假ip

屏蔽统计系统中的虚假IP是保护网站分析数据准确性的重要措施。以下是一些有效的策略和步骤&#xff0c;可以帮助您过滤掉虚假IP&#xff1a; 1. 识别虚假IP的特征 了解虚假IP的常见特征可以帮助您识别和屏蔽它们&#xff1a; 短时间内高频率访问&#xff1a;虚假IP可能会在短…...

前端开发设计模式——策略模式

目录 一、策略模式的定义和特点 1.定义&#xff1a; 2.特点&#xff1a; 二、策略模式的实现方式 1.定义策略接口&#xff1a; 2.创建具体策略类&#xff1a; 3.定义上下文类&#xff1a; 三、策略模式的应用场景 1.表单验证场景&#xff1a; 2.动画效果切换场景&…...

上海企业所得税怎么征收/北京seo推广

1.扫描存活主机&#xff0c;发现存货主机192.168.85.174 nmap 192.168.85.0/242.扫描端口,发现只开放了80端口 nmap -p1-65535 192.168.85.1743.扫描服务版本信息 nma -sV 192.168.85.1744.访问网站&#xff0c;发现cms为joomla 网站中有一段提示&#xff0c;是这个靶机只有…...

个人网站建设方案书范文/seo管理

这个必须要有&#xff0c;不然不能运行虚拟主机 NameVirtualHost *:80 然后设置&#xff1a; <VirtualHost *:80> DirectoryIndex default.php ServerName "www.host1.com" DocumentRoot "D:/wwwroot/host1/" ErrorLog &q…...

wordpress底部代码/地推网

2019年&#xff0c;比尔盖茨在演讲中提出一个问题&#xff1a;“今天的学生要想在2030年和2040年的世界有所成就&#xff0c;需要掌握哪些技能&#xff1f;”这个问题同样值得我们思考。 近年来&#xff0c;全球经济飞速变化&#xff0c;元宇宙、6G、云计算、人工智能等新一代技…...

做聚划算网站/提高seo关键词排名

顺序存储结构列表--整型列表--泛型队列测试用例列表–整型 /**** 列表*/ class MyList{ Integer[] vals null;int size 0;public MyList() {vals new Integer[10];}public MyList(int size) {this.vals new Integer[size];}/**** 获取长度*/public int length() {return s…...

网站建设小故事/青岛seo服务公司

一、永久修改主机名修改/etc/sysconfig/network&#xff0c;在里面指定主机名称HOSTNAME然后执行命令hostname 主机名这个时候可以注销一下系统&#xff0c;再重登录之后就行了。 或者修改/etc/hosts文件中添加192.168.2.13 linux ####ip &#xff0b;主机名然后&#xff1a;ho…...

网站建设可以帮助企业/360点睛实效平台推广

内连接与外连接区别 相同点&#xff1a;匹配到的都显示数据 不同点&#xff1a; 内连接--》匹配不到的不显示 外连接--》匹配不到的主表数据显示&#xff0c;副表显示为空转载于:https://www.cnblogs.com/zhaozhaozhang/p/5758060.html...