决策树中联合概率分布公式解释说明
学习决策树时书本中有一公式 7-3 是:
P ( X = x i , Y = y j ) = p i j ( i = 1 , 2 , … , m , j = 1 , 2 , … , n ) P(X = x_i, Y = y_j) = p_{ij} \quad (i = 1, 2, \dots, m, \ j = 1, 2, \dots, n) P(X=xi,Y=yj)=pij(i=1,2,…,m, j=1,2,…,n)
这个公式表示的是随机变量 X X X 和 Y Y Y 的联合概率分布,其中 X X X 是一个随机变量,取值 x i x_i xi,而 Y Y Y 是另一个随机变量,取值 y j y_j yj。这些随机变量可以表示数据集的特征和对应的类别,联合概率描述了特定特征值和类别同时发生的概率。
公式的各部分解释:
-
P ( X = x i , Y = y j ) P(X = x_i, Y = y_j) P(X=xi,Y=yj):这是联合概率,表示随机变量 X X X 取值为 x i x_i xi,且随机变量 Y Y Y 取值为 y j y_j yj 的概率。这个联合概率表示了在同一时间下 X X X 和 Y Y Y 同时取到某个值的可能性。联合概率分布反映了这两个变量之间的相依关系。
-
p i j p_{ij} pij:这是联合概率的符号表示,代表了 X = x i X = x_i X=xi 且 Y = y j Y = y_j Y=yj 同时发生的概率。 p i j p_{ij} pij 是第 i i i 个 X X X 值和第 j j j 个 Y Y Y 值的联合概率。
-
i = 1 , 2 , … , m i = 1, 2, \dots, m i=1,2,…,m:这是随机变量 X X X 取的值的索引 i i i,表示 X X X 可以取 m m m 个不同的值。
-
j = 1 , 2 , … , n j = 1, 2, \dots, n j=1,2,…,n:这是随机变量 Y Y Y 取的值的索引 j j j,表示 Y Y Y 可以取 n n n 个不同的值。
联合概率的直观理解:
联合概率 P ( X = x i , Y = y j ) P(X = x_i, Y = y_j) P(X=xi,Y=yj) 衡量的是两个事件同时发生的概率。在机器学习的背景下, X X X 和 Y Y Y 可以分别表示输入特征和输出类别。例如, X X X 可能是表示特征的变量,而 Y Y Y 表示类别标签。联合概率反映了在特定输入下,输出某个类别的可能性。
举个例子,假设我们正在做一个邮件分类任务,其中 X X X 是邮件中包含的某个特定词语(如“offer”),而 Y Y Y 是该邮件的类别(垃圾邮件或正常邮件)。那么, P ( X = "offer" , Y = "垃圾邮件" ) P(X = \text{"offer"}, Y = \text{"垃圾邮件"}) P(X="offer",Y="垃圾邮件") 就表示邮件中出现“offer”这个词且该邮件为垃圾邮件的概率。
具体例子:
假设我们有一个简单的二元分类问题(比如垃圾邮件分类),数据集中的每个样本由两个特征 X 1 X_1 X1 和 X 2 X_2 X2 组成,且每个样本属于两个可能的类别之一 Y Y Y,分别是“垃圾邮件”和“正常邮件”。现在,我们定义联合概率分布:
- X 1 X_1 X1 可以取 x 1 x_1 x1 和 x 2 x_2 x2 两个值,分别表示邮件包含或不包含某个特定词汇(如“offer”)。
- X 2 X_2 X2 也可以取 x 1 x_1 x1 和 x 2 x_2 x2 两个值,表示邮件包含或不包含另一个特定词汇(如“free”)。
- Y Y Y 取 y 1 y_1 y1 表示垃圾邮件,取 y 2 y_2 y2 表示正常邮件。
联合概率分布中的各项值 P ( X = x i , Y = y j ) P(X = x_i, Y = y_j) P(X=xi,Y=yj) 代表了邮件中包含某些词语时,它属于垃圾邮件或正常邮件的概率。例如:
- P ( X = "offer" , Y = "垃圾邮件" ) = 0.3 P(X = \text{"offer"}, Y = \text{"垃圾邮件"}) = 0.3 P(X="offer",Y="垃圾邮件")=0.3:表示当邮件包含“offer”时,它被分类为垃圾邮件的概率为 30%。
- P ( X = "offer" , Y = "正常邮件" ) = 0.1 P(X = \text{"offer"}, Y = \text{"正常邮件"}) = 0.1 P(X="offer",Y="正常邮件")=0.1:表示当邮件包含“offer”时,它是正常邮件的概率为 10%。
联合概率计算的具体步骤
联合概率与条件概率的关系:
联合概率与条件概率有着密切的关系。通过联合概率,我们可以计算条件概率。条件概率表示在已知某一事件发生的情况下,另一个事件发生的概率。在我们的例子中,条件概率 P ( Y = 垃圾邮件 ∣ X = "offer" ) P(Y = \text{垃圾邮件} | X = \text{"offer"}) P(Y=垃圾邮件∣X="offer") 表示当我们已知邮件包含“offer”这个词时,它被分类为垃圾邮件的概率。条件概率可以通过联合概率计算得出:
P ( Y = y j ∣ X = x i ) = P ( X = x i , Y = y j ) P ( X = x i ) P(Y = y_j | X = x_i) = \frac{P(X = x_i, Y = y_j)}{P(X = x_i)} P(Y=yj∣X=xi)=P(X=xi)P(X=xi,Y=yj)
这个公式表示已知 X = x i X = x_i X=xi 时,发生 Y = y j Y = y_j Y=yj 的概率,可以通过 X = x i X = x_i X=xi 和 Y = y j Y = y_j Y=yj 同时发生的概率 P ( X = x i , Y = y j ) P(X = x_i, Y = y_j) P(X=xi,Y=yj) 除以 X = x i X = x_i X=xi 的边缘概率来计算。
总结:
公式 7-3 表示随机变量 X X X 和 Y Y Y 的联合概率分布。联合概率分布帮助我们了解多个变量之间的相依关系,是许多机器学习算法(包括决策树、贝叶斯分类器等)的基础。在具体任务中,联合概率可以帮助我们计算输入特征与输出标签之间的关联,并在此基础上进行分类或预测。
相关文章:
决策树中联合概率分布公式解释说明
学习决策树时书本中有一公式 7-3 是: P ( X x i , Y y j ) p i j ( i 1 , 2 , … , m , j 1 , 2 , … , n ) P(X x_i, Y y_j) p_{ij} \quad (i 1, 2, \dots, m, \ j 1, 2, \dots, n) P(Xxi,Yyj)pij(i1,2,…,m, j1,2,…,n) 这个公式表示的是随机变…...
计算机毕业设计 农场投入品运营管理系统的设计与实现 Java实战项目 附源码+文档+视频讲解
博主介绍:✌从事软件开发10年之余,专注于Java技术领域、Python人工智能及数据挖掘、小程序项目开发和Android项目开发等。CSDN、掘金、华为云、InfoQ、阿里云等平台优质作者✌ 🍅文末获取源码联系🍅 👇🏻 精…...
php email功能实现:详细步骤与配置技巧?
php email发送功能详细教程?如何使用php email服务? 无论是用户注册、密码重置,还是订单确认,电子邮件都是与用户沟通的重要手段。AokSend将详细介绍如何实现php email功能,并提供一些配置技巧,帮助你更好…...
MapBox Android版开发 6 关于Logo
MapBox Android版开发 6 关于Logo Logo的显示查看源码及思路(Logo)第一步第二步 隐藏Logo示例查看源码及思路(Info)第一步第二步 隐藏Logo和Info示例 看到有网友留言问如何移除Logo,今天看了下V9源码,发现M…...
2024年房市
24年8月15日,国家统计局公布,“7月末,商品房待售面积73926万平方米”。(原文链接:https://www.stats.gov.cn/sj/zxfb/202408/t20240815_1955982.html) 7.39亿平方存量商品房,估价均价1万每平,总价约&am…...
index索引
index索引: create index 【1】on 【2】(【3】) 1为索引名,通常为id_表名_列名。2为表名。3为列名。 CREATE INDEX id_account_id ON account(id); -- 根据id创建索引 CREATE INDEX id_account_idname on account(id,name); -- 创建组合索引 索…...
理解互联网链路:从本地ISP到Tier 1 ISP运营商
1. 互联网服务提供商(ISP) 互联网服务提供商(ISP)是指提供互联网接入服务的公司或组织。它们负责将用户连接到互联网,并提供相关的服务,如电子邮件、网站托管和其他在线服务。ISP可以分为不同的层级&#…...
基于元神操作系统实现NTFS文件操作(三)
1. 背景 本文主要介绍DBR的读取和解析,并提供了基于元神操作系统的实现代码。由于解析DBR的目的是定位到NTFS磁盘分区的元文件$Root进行文件操作,所以只解析了少量的部分,其它部分可以参考相关文档进行理解。 DBR存在于磁盘分区的第一个扇区…...
深度学习与数学归纳法
最近发现,深度学习可以分为两个主要的阶段,分别是前向推理以及反向传播,分别对应着网络的推理和参数训练两个步骤。其中推理有时候也称为归纳推理。 在做参数训练的时候,本质上是在利用历史数据求网络参数的先验分布; …...
《Linux从小白到高手》理论篇(六):Linux软件安装一篇通
List item 本篇介绍Linux软件安装相关的操作命令,看完本文,有关Linux软件安装相关操作的常用命令你就掌握了99%了。 Linux软件安装 RPM RPM软件的安装、删除、更新只有root权限才能使用;查询功能任何用户都可以操作;如果普通用…...
【Spring】运行Spring Boot项目,请求响应流程分析以及404和500报错
1. 运行项目 import org.springframework.boot.SpringApplication; import org.springframework.boot.autoconfigure.SpringBootApplication; SpringBootApplication public class Application { public static void main(String[] args) { SpringApplication.run(Appl…...
②EtherCAT转Modbus485RTU网关多路同步高速采集无需编程串口服务器
EtherCAT转Modbus485RTU网关多路同步高速采集无需编程串口服务器https://item.taobao.com/item.htm?ftt&id798036415719 EtherCAT 串口网关 EtherCAT 转 RS485 (接上一章) 自由协议通信步骤 (以MS-A2-1041为例) 接收与…...
matlab-对比两张图片的HSV分量的差值并形成直方图
%对比两张图片的HSV分量的差值并形成直方图,改个路径就能用,图片分辨率要一致 close all; clear all; clc; I1imread(E:\test\resources\image\1.jpg); I2imread(E:\test\resources\image\2.jpg); HSV1 rgb2ntsc(I1); HSV2 rgb2ntsc(I2); %HSV,HSV 代…...
微服务SpringGateway解析部署使用全流程
官网地址: Spring Cloud Gateway 目录 1、SpringGateway简介 1、什么是网关 2、为什么用网关【为了转发】 2、应用: 1.启动nacos 2.创建网关项目 3.网关配置1 4.网关配置2【了解】 5.过滤器配置【了解】 1、SpringGateway简介 核心功能有三个&…...
Solidity 存储和内存管理:深入理解与高效优化
在 Solidity 中,存储和内存管理是编写高效智能合约的关键组成部分。合约执行的每一步操作都可能涉及到数据的存储和读取,而这些操作对 gas 的消耗有很大影响。因此,理解 Solidity 的存储模型以及如何优化数据的管理对于合约的安全性、性能和成…...
机器学习篇-day02-KNN算法实现鸢尾花模型和手写数字识别模型
一. KNN简介 KNN思想 K-近邻算法(K Nearest Neighbor,简称KNN)。比如:根据你的“邻居”来推断出你的类别 KNN算法思想:如果一个样本在特征空间中的k 个最相似的样本中的大多数属于某一个类别,则该样本也属…...
【C++】STL--vector
1.vector的介绍 我们先来看看vector的文档介绍,实际中我们只要熟悉相关接口就好了。 成员函数 使用STL的三个境界:能用,明理,能扩展 ,那么下面学习vector,我们也是按照这个方法去学习 2 vector的使用 v…...
Java使用Redis的详细教程
Redis是一个基于内存的key-value结构数据库,即非关系型数据库,具有高性能、丰富的数据类型、持久化、高可用性和分布式等特点。在Java项目中,Redis通常用于缓存、分布式锁、计数器、消息队列和排行榜等场景。以下是在Java中使用Redis的详细教…...
严重 Zimbra RCE 漏洞遭大规模利用(CVE-2024-45519)
攻击者正在积极利用 CVE-2024-45519,这是一个严重的 Zimbra 漏洞,该漏洞允许他们在易受攻击的安装上执行任意命令。 Proofpoint 的威胁研究人员表示,攻击始于 9 月 28 日,几周前,Zimbra 开发人员发布了针对 CVE-2024-…...
php函数积累
对称函数 isset 判断数组arr中是否存在键key 返回值true/false isset(name,$arr) unset 删除数组中的键 需存在key不然抛出异常 unset($arr[name]) json_encode 数据转json格式 json_encode($arr) 一般形式 指定字符编码形式 json_decode json格式转原有数据格式 json_d…...
前端项目场景相关的面试题,包含验证码、图片存储、登录鉴权、动态路由、组件划分等项目场景实际的面试题
项目场景面试题 如何防止短信验证码被刷 问题场景 添加倒计时和图片滑动验证,避免不必要的资源浪费 发送短信验证码需要费用发送短信消耗服务器资源 公司的图片、视频、文件资源如何存储的 传统模式 分开存储到数据服务器,托管服务器到云端 缺点&…...
uniapp 上了原生的 echarts 图表插件了 兼容性还行
插件地址:echarts - DCloud 插件市场 兼容性这块儿不知道后期会不会支持其他浏览器 H5 的话建议可以用原生的不用这个插件...
共享单车轨迹数据分析:以厦门市共享单车数据为例(八)
副标题:基于POI数据的站点综合评价——以厦门市为例(三) 什么是优劣解距离法(TOPSIS)? 优劣解距离法(Technique for Order Preference by Similarity to Ideal Solution,简称TOPSI…...
sentinel原理源码分析系列(二)-动态规则和transport
本文是sentinel原理源码分析系列第二篇,分析两个组件,动态配置和transport 动态规则 Sentinel提供动态规则机制,依赖配置中心,如nacos,zookeeper,组件支持动态配置,模板类型为规则,支…...
ubuntu切换源方式记录(清华源、中科大源、阿里源)
文章目录 前言一、中科大源二、清华源三、阿里源 前言 记录ubunut切换各个源的方式。 备注:更换源之后使用sudo apt-get update更新索引。 提示:以下是本篇文章正文内容,下面案例可供参考 一、中科大源 地址:https://mirrors.u…...
【10】纯血鸿蒙HarmonyOS NEXT星河版开发0基础学习笔记-泛型基础全解(泛型函数、泛型接口、泛型类)及参数、接口补充
序言: 本文详细讲解了关于ArkTs语言中的泛型,其中包含泛型函数、泛型接口、泛型约束、泛型类及其中参数的使用方法,补充了一部分接口相关的知识,包括接口的继承和具体实现,也写到了一些边边角角的小知识,剩…...
2024年09月CCF-GESP编程能力等级认证C++编程一级真题解析
本文收录于专栏《C++等级认证CCF-GESP真题解析》,专栏总目录:点这里。订阅后可阅读专栏内所有文章。 一、单选题(每题 2 分,共 30 分) 第 1 题 据有关资料,山东大学于1972年研制成功DJL-1计算机,并于1973年投入运行,其综合性能居当时全国第三位。DJL-1计算机运算控制…...
基于多维统计分析与GMM聚类的食品营养特征研究
1.项目背景 在当今社会,随着人们对健康和营养的日益关注,深入了解食品的营养成分及其对人体的影响变得越来越重要,本研究采用了多维度的分析方法,包括营养成分比较分析、统计检验、营养密度分析和高斯混合模型(GMM&am…...
SkyWalking 告警功能
SkyWalking 告警功能是在 6.x 版本新增的,其核心由一组规则驱动,这些规则定义在config/alarm-settings.yml文件中。 告警规则 告警规则:它们定义了应该如何触发度量警报,应该考虑什么条件。Webhook(网络钩子):定义当警告触发时,哪些服务终端需要被告知。常用告警规则 …...
国内旅游:现状与未来趋势分析
在当今社会快速发展的背景下,国内旅游更是呈现出蓬勃的发展态势。中国,这片拥有悠久历史、灿烂文化和壮丽山河的广袤土地,为国内旅游的兴起与发展提供了得天独厚的条件。 本报告将借助 DataEase 强大的数据可视化分析能力,深入剖…...
客户网站开发全流程图/如何策划一个营销方案
不知道怎么个情况,bootRun突然给报了个错,提示: bootRun FAILED FAILURE: Build failed with an exception. 懵逼,前一秒还好好的,咋后一秒就不行了呢,由于没有详细日志,遂使用命令行执行 gradl…...
西安建设网站排名/怎么样做一个自己的网站
组合控件详解 & 自定义属性组合控件是自定义控件的一种,只不过它是由其他几个原生控件组合而成,故名组合控件。在实际项目中,GUI 会遇到一些可以提取出来做成自定义控件情况。一个自定义控件的好处就是把一些需要模块化的 UI 和逻辑放在一…...
做动态网站有哪些技术路线/google中文搜索引擎入口
新浪分享比较简单,新浪有提供完整的demo。 android实现新浪的分享功能,分3种分享情况: 纯文本的,带图片的,图片为本地图片(传入的是图片在手机的地址),第2种带图片的是,网…...
怎样做自己的网站/凌哥seo技术博客
题目链接 题目意思:有多个城市,多条路,路都是双向的,有一些城市有机器人大军,我们想通过破坏城市之间的城市来断绝机器人大军的联系,并且用最少的时间。 用krusual算法,并用mark标记存在有机器人…...
我自己做个网站怎么做/sem是什么显微镜
LINUX PXE网络安装远程客户端计算机启动,由于BIOS设置了网卡启动,所以网卡PXE ROM中的程序被调入内存执行。首先,客户端在网络中寻找DHCP服务器,然后请求一个IP地址;同时DHCP服务器联系到TFTP服务器为此客户端发送一个…...
淘宝商家网站建设/电子商务网站建设论文
大型稀疏矩阵对存储和CPU要求高,很多集成化软件对于特大型矩阵的运算束手无策,因此需要一种优良的数据结构筛除稀疏矩阵中的0,从而实现数据的高效存储和运算。 对于m行n列的大型稀疏矩阵A(large sparse matrix)&#…...