当前位置: 首页 > news >正文

【算法】---归并排序(递归非递归实现)

参考

左程云算法
算法导论

前言

本篇介绍

  • 归并排序
  • 分治法

前置知识

  • 了解递归, 了解数组。

引入

归并排序
归并排序最早是由公认的现代计算机之父John von Neumann发明的, 这是一种典型的分治思想应用。

我们先介绍分治思想
分治思想
分治思想的想法基于递归, 许多算法可以通过自身调用, 来降低问题的规模, 又获得与原问题类似的子问题。可见, 分治法本质是递归思想的一个分支,分治法还要额外进行处理, 先进行递归地求解子问题, 然后合并这些子问题的解求出原问题的解。

通过一个简单的例子, 来讲解分治思想。
给定一个int类型的数组, 求解该数组的最大值。
你可能已经很熟悉了, 线性遍历即可

public static int getMaxValue1(int[] arr) {int n = arr.length;//max,初始默认为系统最小值。int max = Integer.MIN_VALUE;//无序数组, 直接遍历for(int i=0;i<n;i++) {max = Math.max(max, arr[i]);}return max;}

分治思想如何运用呢? 原数组区间范围在[0, arr.length - 1],求解原数组的大小可以被递归解决吗?
很有可能的想法, 直观上, 我们求解原数组的最大值就是求解在原数组序列中最大值。只需要等分序列即可, 将原数组序列的最大值,分解成左右子序列的最大值问题, 从递归上,对子序列可以同样这样处理,直到不需要递归继续降解规模了(递归模式结束, 处理基线条件,以防止死递归了)。
问题在于, 规模确实减小了,但左序列的最大值不一定是整个数组的最大值。 直觉上, 将左右序列的最大值进行比较,决定合并两个序列的最大值。
为此, 我们可以写出分治法的求解子问题的写法。

public static int getMaxValue(int[] arr) {if(arr==null||arr.length==0) {return Integer.MIN_VALUE;//处理值为null,传参为空数组的情况。}return process(arr, 0, arr.length-1);}public static int process(int[] arr, int l, int r) {if(l>r) {return Integer.MIN_VALUE;}if(l==r) {return arr[l];//直接返回值}//递归条件, 降低规模//分治的过程int mid = (l+r)/2;int lmax = process(arr, l, mid);int rmax = process(arr, mid+1, r);//合并的过程。return Math.max(lmax, rmax);}public static void main(String[] args) {int[] arr = {3,5,1,7,8,9,11,2};//对比两种方法, 观察结果是否一致。 相互验证!System.out.println("最大值:"+getMaxValue1(arr));System.out.println("最大值:"+ getMaxValue(arr));}
/***  output:*  最大值:11*  最大值:11*/

总结
对于每层递归:
分治法有三个步骤

  • 分解原问题为若干子问题(不一定像上述例子二等分), 子问题是规模减小的原问题。
  • 递归地处理这些子问题, 核心是什么时候继续递归分解, 什么时候直接求解。—写递归时必须想明白, 否则StackOverflow等着你。
  • 合并处理子问题的解进而求出原问题的解。

能不能降低规模, 处理好递归,以及合并这个操作具体怎么写。写好分治法的难点。

归并排序

归并排序也是一种分治思想的体现。
基本思想就是,左边有序,右边有序。然后调整为整体有序。

  • 分割: 将数组序列二等分, 利用递归不断分解。
  • 合并: 合并两个有序序列,保持原来的元素的相对顺序不变。

结合代码和下面图片

	public static void mergeSort(int[] arr) {//无效值null, 数组元素不为2,不需要排序。if(arr==null || arr.length<2) {return ;}//开始process(arr,0, arr.length-1);}public static void process(int[] arr, int l, int r) {//基线条件处理if(l>=r) {return ;}//选中分割下标, 直接取中值即可int mid = (l+r)/2;//左边递归调用process(arr,l, mid);//右边递归调用, 注意参数process(arr,mid+1,r);//合并操作merge(arr,l,mid,r);}public static void merge(int[] arr,int l,int m, int r) {int i = 0;int a = l;int b = m+1;//拷贝一个临时数组int[] help = new int[r-l+1];//比大小的过程while(a<=m && b<=r ) {help[i++]=arr[a]<=arr[b]?arr[a++]:arr[b++];}//处理剩余的序列while(a<=m) {help[i++] = arr[a++];}while(b<=r) {help[i++] = arr[b++];}//将数据拷贝回原序列。for(i=l;i<=r;i++) {arr[i] = help[i-l];}}//测试用例。public static void main(String[] args) {int[] arr= {4,1,6,23,8,9,11,0,2,3,4,4,4,4,10};System.out.println("排序前:"+Arrays.toString(arr));mergeSort(arr);System.out.println("排序后:"+Arrays.toString(arr));}/*** output:* 排序前:[4, 1, 6, 23, 8, 9, 11, 0, 2, 3, 4, 4, 4, 4, 10]* 排序后:[0, 1, 2, 3, 4, 4, 4, 4, 4, 6, 8, 9, 10, 11, 23]*/

在这里插入图片描述
开始有一个主方法,mergeSort,只需要传递一个int数组即可。
process这一函数是不断递归地分解问题。merge函数是服务当前的process函数。
比如,[4,8],[5,7]给定两个子序列, 通过分离双指针和临时数组help进行比较,原理是拷贝完较小的数组,然后拷贝完剩余的数组。
先将两个序列的比较结果拷贝进help数组,help=[4,5,7],此时还剩下一个元素8,因为没有数可比了,序列[5,7]的指针已经走到了尽头。只需要挨个检查将剩下的元素依次拷贝进help数组即可。
以上就是对这行代码的解释:

		//比大小的过程while(a<=m && b<=r ) {help[i++]=arr[a]<=arr[b]?arr[a++]:arr[b++];}//处理剩余的序列while(a<=m) {help[i++] = arr[a++];}while(b<=r) {help[i++] = arr[b++];}

最后, 将临时数组help存储的有序序列依次拷贝回原数组的对应序列即可。注意这里是原数组进行修改。

		//将数据拷贝回原序列。for(i=l;i<=r;i++) {arr[i] = help[i-l];}

递归版的复杂度

时间复杂度: O ( n l o g n ) O(nlogn) O(nlogn), 系统压栈高度为logn,merge函数时间 O ( n ) O(n) O(n), 乘起来就是 O ( n l o g n ) O(nlogn) O(nlogn)
空间复杂度: O ( n ) O(n) O(n), 借助了一个临时数组help.

非递归实现

public static void mergeSort(int[] arr) {int n = arr.length;//step分组数, step为1,说明左右区间各有一个数(除非区间已经越界, 则相应调整)//先两两分组, 再以4个为一组, 8个为一组...直到单次分组已经超过数组总的元素个数就终止。for (int l, m, r, step = 1; step < n; step <<= 1) {l = 0;//后面就是讨论区间while (l < n) {//确定区间的中间下标m = l + step - 1;//判断右边界是否存在if (m + 1 >= n) {//无右侧, 不用后续merge了。break;//不存在说明单层的归并排序结束。}//求右边界r = Math.min(l + (step << 1) - 1, n - 1);//确定好了,l,m,r的值,进行合并merge(arr, l, m, r);//内层while循环进行调整l = r + 1;}}}public static void merge(int[] arr,int l, int m,int r) {int a = l;int b = m+1;int[] help = new int[r-l+1];int i = 0;while(a<=m && b<=r) {help[i++] = arr[a]<=arr[b]?arr[a++]:arr[b++];}while(a<=m) {help[i++] = arr[a++];}while(b<=r) {help[i++] = arr[b++];}for(i=l;i<=r;i++) {arr[i] = help[i-l];}}//测试用例。public static void main(String[] args) {int[] arr= {4,1,6,23,8,9,11,0,2,3,4,4,4,4,10};System.out.println("排序前:"+Arrays.toString(arr));mergeSort(arr);System.out.println("排序后:"+Arrays.toString(arr));}/*** output:* 排序前:[4, 1, 6, 23, 8, 9, 11, 0, 2, 3, 4, 4, 4, 4, 10]* 排序后:[0, 1, 2, 3, 4, 4, 4, 4, 4, 6, 8, 9, 10, 11, 23]*/

归并排序为什么如此高效, 左神说过是因为比较排序中的比较次数没有浪费。 确实如此, 比较排序可以抽象为决策树模型, 比较次数最少就是 n l o g n nlogn nlogn, 而对于三大平方的‘傻瓜式’排序算法, 因为浪费了比较次数,导致时间复杂度变高了。

练习

	//请用递归和非递归方法实现。//阐述一下归并排序的思想。public static void mergeSort(int[] nums) {/*write code here! */}

你已经学会了归并排序了, 快速试试吧!。

总结

本篇并不涉及算法的严格分析, 因为算法导论一书中已经写好了严谨有力的证明(算法导论第二章和第4章)。
下次见!

相关文章:

【算法】---归并排序(递归非递归实现)

参考 左程云算法 算法导论 前言 本篇介绍 归并排序分治法 前置知识 了解递归&#xff0c; 了解数组。 引入 归并排序 归并排序最早是由公认的现代计算机之父John von Neumann发明的&#xff0c; 这是一种典型的分治思想应用。 我们先介绍分治思想 分治思想 分治思想的…...

UniVue大版本更新:UniVue2.0.0-preview

大版本发布说明 距离上次更新好像已经过去很久了&#xff0c;最近太忙了没时间维护新版本&#xff0c;也是自己在使用的过程中发现了很多问题也有了更多的灵感&#xff0c;由于和之前的版本区别太大&#xff0c;决定重新开一个大版本。这个UniVue2之后的版本追求是性能&#xf…...

RabbbitMQ篇(环境搭建 - 下载 安装)(持续更新迭代)

目录 一、Windows 1. 下载安装程序 2. 安装配置erlang 3. 安装rabbitMQ 4. 验证 二、Linux 1. 下载rpm包 1.1. 下载Erlang的rpm包 1.2. 下载socat的rpm包 1.3. 下载RabbitMQ的rpm包 2. 安装 2.1. 安装Erlang 2.2. 安装socat 2.3. 安装RabbitMQ 3. 启动RabbitMQ服…...

C++基础补充(02)C++其他控制语句break continue goto等

文章目录 1. break2. continue 语句3. goto 语句goto的存在 4. 跳出多重循环4.1 goto 直接跳转4.2 C11及其后版本的 return 语句4.3 使用标志变量 在C中&#xff0c;控制语句用于管理程序的执行流程。常见有 break、continue 和 goto。 1. break break语句主要用于在循环或者s…...

决策树中联合概率分布公式解释说明

学习决策树时书本中有一公式 7-3 是&#xff1a; P ( X x i , Y y j ) p i j ( i 1 , 2 , … , m , j 1 , 2 , … , n ) P(X x_i, Y y_j) p_{ij} \quad (i 1, 2, \dots, m, \ j 1, 2, \dots, n) P(Xxi​,Yyj​)pij​(i1,2,…,m, j1,2,…,n) 这个公式表示的是随机变…...

计算机毕业设计 农场投入品运营管理系统的设计与实现 Java实战项目 附源码+文档+视频讲解

博主介绍&#xff1a;✌从事软件开发10年之余&#xff0c;专注于Java技术领域、Python人工智能及数据挖掘、小程序项目开发和Android项目开发等。CSDN、掘金、华为云、InfoQ、阿里云等平台优质作者✌ &#x1f345;文末获取源码联系&#x1f345; &#x1f447;&#x1f3fb; 精…...

php email功能实现:详细步骤与配置技巧?

php email发送功能详细教程&#xff1f;如何使用php email服务&#xff1f; 无论是用户注册、密码重置&#xff0c;还是订单确认&#xff0c;电子邮件都是与用户沟通的重要手段。AokSend将详细介绍如何实现php email功能&#xff0c;并提供一些配置技巧&#xff0c;帮助你更好…...

MapBox Android版开发 6 关于Logo

MapBox Android版开发 6 关于Logo Logo的显示查看源码及思路&#xff08;Logo&#xff09;第一步第二步 隐藏Logo示例查看源码及思路&#xff08;Info&#xff09;第一步第二步 隐藏Logo和Info示例 看到有网友留言问如何移除Logo&#xff0c;今天看了下V9源码&#xff0c;发现M…...

2024年房市

24年8月15日&#xff0c;国家统计局公布&#xff0c;“7月末&#xff0c;商品房待售面积73926万平方米”。(原文链接&#xff1a;https://www.stats.gov.cn/sj/zxfb/202408/t20240815_1955982.html)   7.39亿平方存量商品房&#xff0c;估价均价1万每平&#xff0c;总价约&am…...

index索引

index索引&#xff1a; create index 【1】on 【2】(【3】) 1为索引名&#xff0c;通常为id_表名_列名。2为表名。3为列名。 CREATE INDEX id_account_id ON account(id); -- 根据id创建索引 CREATE INDEX id_account_idname on account(id,name); -- 创建组合索引 索…...

理解互联网链路:从本地ISP到Tier 1 ISP运营商

1. 互联网服务提供商&#xff08;ISP&#xff09; 互联网服务提供商&#xff08;ISP&#xff09;是指提供互联网接入服务的公司或组织。它们负责将用户连接到互联网&#xff0c;并提供相关的服务&#xff0c;如电子邮件、网站托管和其他在线服务。ISP可以分为不同的层级&#…...

基于元神操作系统实现NTFS文件操作(三)

1. 背景 本文主要介绍DBR的读取和解析&#xff0c;并提供了基于元神操作系统的实现代码。由于解析DBR的目的是定位到NTFS磁盘分区的元文件$Root进行文件操作&#xff0c;所以只解析了少量的部分&#xff0c;其它部分可以参考相关文档进行理解。 DBR存在于磁盘分区的第一个扇区…...

深度学习与数学归纳法

最近发现&#xff0c;深度学习可以分为两个主要的阶段&#xff0c;分别是前向推理以及反向传播&#xff0c;分别对应着网络的推理和参数训练两个步骤。其中推理有时候也称为归纳推理。 在做参数训练的时候&#xff0c;本质上是在利用历史数据求网络参数的先验分布&#xff1b; …...

《Linux从小白到高手》理论篇(六):Linux软件安装一篇通

List item 本篇介绍Linux软件安装相关的操作命令&#xff0c;看完本文&#xff0c;有关Linux软件安装相关操作的常用命令你就掌握了99%了。 Linux软件安装 RPM RPM软件的安装、删除、更新只有root权限才能使用&#xff1b;查询功能任何用户都可以操作&#xff1b;如果普通用…...

【Spring】运行Spring Boot项目,请求响应流程分析以及404和500报错

1. 运行项目 import org.springframework.boot.SpringApplication; import org.springframework.boot.autoconfigure.SpringBootApplication; SpringBootApplication public class Application { public static void main(String[] args) { SpringApplication.run(Appl…...

②EtherCAT转Modbus485RTU网关多路同步高速采集无需编程串口服务器

EtherCAT转Modbus485RTU网关多路同步高速采集无需编程串口服务器https://item.taobao.com/item.htm?ftt&id798036415719 EtherCAT 串口网关 EtherCAT 转 RS485 &#xff08;接上一章&#xff09; 自由协议通信步骤 &#xff08;以MS-A2-1041为例&#xff09; 接收与…...

matlab-对比两张图片的HSV分量的差值并形成直方图

%对比两张图片的HSV分量的差值并形成直方图&#xff0c;改个路径就能用&#xff0c;图片分辨率要一致 close all; clear all; clc; I1imread(E:\test\resources\image\1.jpg); I2imread(E:\test\resources\image\2.jpg); HSV1 rgb2ntsc(I1); HSV2 rgb2ntsc(I2); %HSV,HSV 代…...

微服务SpringGateway解析部署使用全流程

官网地址&#xff1a; Spring Cloud Gateway 目录 1、SpringGateway简介 1、什么是网关 2、为什么用网关【为了转发】 2、应用&#xff1a; 1.启动nacos 2.创建网关项目 3.网关配置1 4.网关配置2【了解】 5.过滤器配置【了解】 1、SpringGateway简介 核心功能有三个&…...

Solidity 存储和内存管理:深入理解与高效优化

在 Solidity 中&#xff0c;存储和内存管理是编写高效智能合约的关键组成部分。合约执行的每一步操作都可能涉及到数据的存储和读取&#xff0c;而这些操作对 gas 的消耗有很大影响。因此&#xff0c;理解 Solidity 的存储模型以及如何优化数据的管理对于合约的安全性、性能和成…...

机器学习篇-day02-KNN算法实现鸢尾花模型和手写数字识别模型

一. KNN简介 KNN思想 K-近邻算法&#xff08;K Nearest Neighbor&#xff0c;简称KNN&#xff09;。比如&#xff1a;根据你的“邻居”来推断出你的类别 KNN算法思想&#xff1a;如果一个样本在特征空间中的k 个最相似的样本中的大多数属于某一个类别&#xff0c;则该样本也属…...

【C++】STL--vector

1.vector的介绍 我们先来看看vector的文档介绍&#xff0c;实际中我们只要熟悉相关接口就好了。 成员函数 使用STL的三个境界&#xff1a;能用&#xff0c;明理&#xff0c;能扩展 &#xff0c;那么下面学习vector&#xff0c;我们也是按照这个方法去学习 2 vector的使用 v…...

Java使用Redis的详细教程

Redis是一个基于内存的key-value结构数据库&#xff0c;即非关系型数据库&#xff0c;具有高性能、丰富的数据类型、持久化、高可用性和分布式等特点。在Java项目中&#xff0c;Redis通常用于缓存、分布式锁、计数器、消息队列和排行榜等场景。以下是在Java中使用Redis的详细教…...

严重 Zimbra RCE 漏洞遭大规模利用(CVE-2024-45519)

攻击者正在积极利用 CVE-2024-45519&#xff0c;这是一个严重的 Zimbra 漏洞&#xff0c;该漏洞允许他们在易受攻击的安装上执行任意命令。 Proofpoint 的威胁研究人员表示&#xff0c;攻击始于 9 月 28 日&#xff0c;几周前&#xff0c;Zimbra 开发人员发布了针对 CVE-2024-…...

php函数积累

对称函数 isset 判断数组arr中是否存在键key 返回值true/false isset(name,$arr) unset 删除数组中的键 需存在key不然抛出异常 unset($arr[name]) json_encode 数据转json格式 json_encode($arr) 一般形式 指定字符编码形式 json_decode json格式转原有数据格式 json_d…...

前端项目场景相关的面试题,包含验证码、图片存储、登录鉴权、动态路由、组件划分等项目场景实际的面试题

项目场景面试题 如何防止短信验证码被刷 问题场景 添加倒计时和图片滑动验证&#xff0c;避免不必要的资源浪费 发送短信验证码需要费用发送短信消耗服务器资源 公司的图片、视频、文件资源如何存储的 传统模式 分开存储到数据服务器&#xff0c;托管服务器到云端 缺点&…...

uniapp 上了原生的 echarts 图表插件了 兼容性还行

插件地址&#xff1a;echarts - DCloud 插件市场 兼容性这块儿不知道后期会不会支持其他浏览器 H5 的话建议可以用原生的不用这个插件...

共享单车轨迹数据分析:以厦门市共享单车数据为例(八)

副标题&#xff1a;基于POI数据的站点综合评价——以厦门市为例&#xff08;三&#xff09; 什么是优劣解距离法&#xff08;TOPSIS&#xff09;&#xff1f; 优劣解距离法&#xff08;Technique for Order Preference by Similarity to Ideal Solution&#xff0c;简称TOPSI…...

sentinel原理源码分析系列(二)-动态规则和transport

本文是sentinel原理源码分析系列第二篇&#xff0c;分析两个组件&#xff0c;动态配置和transport 动态规则 Sentinel提供动态规则机制&#xff0c;依赖配置中心&#xff0c;如nacos&#xff0c;zookeeper&#xff0c;组件支持动态配置&#xff0c;模板类型为规则&#xff0c;支…...

ubuntu切换源方式记录(清华源、中科大源、阿里源)

文章目录 前言一、中科大源二、清华源三、阿里源 前言 记录ubunut切换各个源的方式。 备注&#xff1a;更换源之后使用sudo apt-get update更新索引。 提示&#xff1a;以下是本篇文章正文内容&#xff0c;下面案例可供参考 一、中科大源 地址&#xff1a;https://mirrors.u…...

【10】纯血鸿蒙HarmonyOS NEXT星河版开发0基础学习笔记-泛型基础全解(泛型函数、泛型接口、泛型类)及参数、接口补充

序言&#xff1a; 本文详细讲解了关于ArkTs语言中的泛型&#xff0c;其中包含泛型函数、泛型接口、泛型约束、泛型类及其中参数的使用方法&#xff0c;补充了一部分接口相关的知识&#xff0c;包括接口的继承和具体实现&#xff0c;也写到了一些边边角角的小知识&#xff0c;剩…...

网站开发背景怎么写/西安做网站公司

本节书摘来自异步社区出版社《相关性准则——大数据时代的高效能之道》一书中的第1章&#xff0c;第1.6节&#xff0c;作者&#xff1a;【意】Stefania Lucchetti&#xff0c;更多章节内容可以访问云栖社区“异步社区”公众号查看。 1.6 相关性准则 相关性准则——大数据时代的…...

做网站如何购买服务器吗/免费站长统计工具

目前市面上的产品帮助文档形式主要chm、word、pdf等&#xff0c;不过大家最常见的还是chm帮助文档。 小编这次要给大家安利一款制作出来效果远超chm帮助文档制作软件-Baklib。Baklib是一款专注于制作帮助文档软件&#xff0c;展示效果极佳&#xff0c;放在网页、产品内部有很好…...

做电商需要哪些网站/制作一个网站的全过程

>>回到总目录<< 为了不辜负已经订阅了专栏的同学们的信任,所以本专栏不会有任何的优惠活动。 另外,当订阅人数每次达到 2 n ( n > 2 ) 2^n(n>2) 2...

北京建设监理网站/关键词分析工具

创业者需具备的潜质——“变态”[温馨提示&#xff1a;变态需谨慎] 通常的情况下每个人都认为自己具有开创一翻事业的潜质&#xff0c;事实上真正具有这种潜质的人其实并不多。很多人只是简单的认为自己什么条件都不缺&#xff0c;唯一缺的就是钱。实际上即使他们有钱&#xff…...

完善政府门户网站建设方案/投百度做广告效果怎么样

01、简介 每个域控制器都有一个目录还原模式&#xff08;DSRM&#xff09;帐户&#xff0c;它的密码是在安装域控时设置的&#xff0c;实际上它对应的就是sam文件里的本地管理员“administrator”&#xff0c;基本很少会被重置&#xff0c;因此有着极强的隐蔽性。攻击者通过获取…...

黄石企业网站建设/网络营销的方式和方法

简介 自2007年发布以来&#xff0c;scikit-learn已经成为Python重要的机器学习库了。scikit-learn简称sklearn&#xff0c;支持包括分类、回归、降维和聚类四大机器学习算法。还包含了特征提取、数据处理和模型评估三大模块。  sklearn是Scipy的扩展&#xff0c;建立在NumPy和…...