当前位置: 首页 > news >正文

MongoDB-aggregate流式计算:带条件的关联查询使用案例分析

在数据库的查询中,是一定会遇到表关联查询的。当两张大表关联时,时常会遇到性能和资源问题。这篇文章就是用一个例子来分享MongoDB带条件的关联查询发挥的作用。

假设工作环境中有两张MongoDB集合:SC_DATA(学生基本信息集合)、DICT_DATA(值域字典集合),集合结构如下:

SC_DATA
uniqueid学生唯一号
sfzid        学生身份证
xsxm学生姓名
mz民族
xb性别
DICT_DATA
clss字典类别
value        字典值域
map字典值域映射值
version字典版本

 现在分别给这两张表插入一些测试数据,给SC_DATA插入10条数据,给DICT_DATA插入6条数据

db.SC_DATA.insertMany([{ "uniqueid" : "10001", "sfzid" : "3715xxxx0813", "xsxm" :"张一","mz":"1","xb":"1" },{ "uniqueid" : "10002", "sfzid" : "3715xxxx0814", "xsxm" :"张二","mz":"1","xb":"1" },{ "uniqueid" : "10003", "sfzid" : "3715xxxx0815", "xsxm" :"张三","mz":"1","xb":"1" },{ "uniqueid" : "10004", "sfzid" : "3715xxxx0816", "xsxm" :"张四","mz":"1","xb":"b" },{ "uniqueid" : "10005", "sfzid" : "3715xxxx0817", "xsxm" :"张五","mz":"a","xb":"1" },{ "uniqueid" : "10006", "sfzid" : "3715xxxx0819", "xsxm" :"张六","mz":"1","xb":"b" },{ "uniqueid" : "10007", "sfzid" : "3715xxxx0823", "xsxm" :"张七","mz":"1","xb":"1" },{ "uniqueid" : "10008", "sfzid" : "3715xxxx0833", "xsxm" :"张八","mz":"1","xb":"1" },{ "uniqueid" : "10009", "sfzid" : "3715xxxx0843", "xsxm" :"张九","mz":"1","xb":"1" },{ "uniqueid" : "100010", "sfzid" : "3715xxxx0853", "xsxm" :"张十","mz":"1","xb":"1" },
])
db.DICT_DATA.insertMany([{ "clss" : "民族", "value" : "汉族", "map" :"1","version":"v1.0"},{ "clss" : "民族", "value" : "壮族", "map" :"2","version":"v1.0"},{ "clss" : "民族", "value" : "满族", "map" :"3","version":"v1.0"},{ "clss" : "民族", "value" : "回族", "map" :"4","version":"v1.0"},{ "clss" : "性别", "value" : "男",   "map" :"1","version":"v1.0"},{ "clss" : "性别", "value" : "女",   "map" :"2","version":"v1.0"}])

此时,有个需求是 “统计出SC_DATA集合中民族、性别字段在字典值域内的数据”!

         一般呢,思路是利用两集合关联,过滤出能关联上的数据。MongoDB的$lookup操作符类似于关系数据库的左连接,根据当前实际情况,用大表(SC_DATA.mz、SC_DATA.xb)左连接小表(DICT_DATA.map),能关联上的数据就是SC_DATA集合中民族、性别字段在字典值域内的数据!

        一般呢,就直接用了$lookup进行关联了,但是,观察下DICT_DATA字典数据,承担关联任务的字段——map,有多个相同值,必须加上clss条件过滤才能得出准确数据,代码如下。

db.SC_DATA.aggregate([{$lookup: {from: "DICT_DATA",localField: "mz",foreignField: "map",as: "DICT_DATA"}},{$unwind: {path: "$DICT_DATA",preserveNullAndEmptyArrays: true}},{$match: {"DICT_DATA.clss": "民族"}},{$group: {_id: null,count: {$sum: 1}}}])

        但是,诸位请看,上面的代码是先关联,再过滤。通过compass工具分阶段查看,可以更清晰的看到关联后,因为DICT_DATA.map存在重复值,所以如果SC_DATA能和DICT_DATA关联上的话,数据会翻倍。

        对于我们上面的测试数据,SC_DATA有10条测试数据,和DICT_DATA关联后数据量是19条,过滤clss后是9条。大家可能觉得这种还好,但是如果SC_DATA有上千万条数据,DICT_DATA的数据更多,重复值更多,这样关联出来的数据是非常惊人的,效率也会变得奇慢无比,甚至会造成数据库卡死。

        如果能够在关联出结果前,就进行过滤,就会让更少量的数据进入到下一个MongoDB聚合管道,就会消耗更少量的资源。

这里也就引出了这篇文章的主角:带条件的$lookup,语法格式如下:

{$lookup:{from: <joined collection>,let: { <var_1>: <expression>, …, <var_n>: <expression> },pipeline: [ <pipeline to run on joined collection> ],as: <output array field>}
}

参数说明如下:

参数

说明

from

指定待执行连接操作的集合,是当前集合【可以看下面的例子理解】

let

指定各个管道阶段使用的变量,这里的变量可以放到pipeline中使用;

这里指定的都是自身当前集合中的字段变量;

这里指定变量的时候以 col_name:$col_name的形式,在pipeline中使用的时候以 $$col_name形式 使用;

pipeline

1、pipeline中,可以使用let中指定的变量,也可以使用当前集合中的字段;

2、pipeline中,$match阶段需要使用$expr操作符来访问变量,$expr允许在$match中使用聚合表达式;

3、pipeline中,放置在$expr上的$eq、$lt、$lte、$gt、$gte比较操作符,可以使用$lookup阶段引用的 from集合上的索引;

3.1、使用索引的限制一:不使用多键索引;

3.2、使用索引的限制二:当操作的数量比较大,或者操作数据类型没有定义时,不使用索引;

3.3、使用索引的限制三:索引只能用于字段和常量之间的比较,变量和变量之间的比较不能使用索引;

4、pipeline中,非$match阶段,不需要使用$expr操作符来访问变量

as

指定要添加到已连接文档的新数量字段的名称。新的大量字段包含来自加入的收集的匹配文档。如果指定的名称已存在于所连接的文档中,则现有字段将被覆盖。

        针对  “统计出SC_DATA集合中民族、性别字段在字典值域内的数据”!这个需求,我们就可以将其写为如下代码!

db.SC_DATA.aggregate([{$lookup: {from: "DICT_DATA",let: {mz: "$mz"},pipeline: [{$match: {$expr: {$and: [{$eq: ["$map", "$$mz"]},{$eq: ["$clss", "民族"]}]}}}],as: "DICT_DATA"}},{$unwind: {path: "$DICT_DATA",preserveNullAndEmptyArrays: true}},{$match: {"DICT_DATA.map": {$ne: null}}},{$group: {_id: null,count: {$sum: 1}}}])

        从compass工具中,可以更清晰的看到数据量变化。此时,因为在输出关联数据前,先进行了过滤。这种写法可以消耗更少的数据库及系统资源,但在索引使用上和正常关联略有区别需要注意。

相关文章:

MongoDB-aggregate流式计算:带条件的关联查询使用案例分析

在数据库的查询中&#xff0c;是一定会遇到表关联查询的。当两张大表关联时&#xff0c;时常会遇到性能和资源问题。这篇文章就是用一个例子来分享MongoDB带条件的关联查询发挥的作用。 假设工作环境中有两张MongoDB集合&#xff1a;SC_DATA&#xff08;学生基本信息集合&…...

Redis数据库与GO(一):安装,string,hash

安装包地址&#xff1a;https://github.com/tporadowski/redis/releases 建议下载zip版本&#xff0c;解压即可使用。解压后&#xff0c;依次打开目录下的redis-server.exe和redis-cli.exe&#xff0c;redis-cli.exe用于输入指令。 一、基本结构 如图&#xff0c;redis对外有个…...

expressjs,实现上传图片,返回图片链接

在 Express.js 中实现图片上传并返回图片链接&#xff0c;你通常需要使用一个中间件来处理文件上传&#xff0c;比如 multer。multer 是一个 node.js 的中间件&#xff0c;用于处理 multipart/form-data 类型的表单数据&#xff0c;主要用于上传文件。 以下是一个简单的示例&a…...

爬虫——XPath基本用法

第一章XML 一、xml简介 1.什么是XML&#xff1f; 1&#xff0c;XML指可扩展标记语言 2&#xff0c;XML是一种标记语言&#xff0c;类似于HTML 3&#xff0c;XML的设计宗旨是传输数据&#xff0c;而非显示数据 4&#xff0c;XML标签需要我们自己自定义 5&#xff0c;XML被…...

常见排序算法汇总

排序算法汇总 这篇文章说明下排序算法&#xff0c;直接开始。 1.冒泡排序 最简单直观的排序算法了&#xff0c;新手入门的第一个排序算法&#xff0c;也非常直观&#xff0c;最大的数字像泡泡一样一个个的“冒”到数组的最后面。 算法思想&#xff1a;反复遍历要排序的序列…...

Golang | Leetcode Golang题解之第459题重复的子字符串

题目&#xff1a; 题解&#xff1a; func repeatedSubstringPattern(s string) bool {return kmp(s s, s) }func kmp(query, pattern string) bool {n, m : len(query), len(pattern)fail : make([]int, m)for i : 0; i < m; i {fail[i] -1}for i : 1; i < m; i {j : …...

0.计网和操作系统

0.计网和操作系统 熟悉计算机网络和操作系统知识&#xff0c;包括 TCP/IP、UDP、HTTP、DNS 协议等。 常见的页面置换算法&#xff1a; 先进先出&#xff08;FIFO&#xff09;算法&#xff1a;将最早进入内存的页面替换出去。最近最少使用&#xff08;LRU&#xff09;算法&am…...

探索Prompt Engineering:开启大型语言模型潜力的钥匙

前言 什么是Prompt&#xff1f;Prompt Engineering? Prompt可以理解为向语言模型提出的问题或者指令&#xff0c;它是激发模型产生特定类型响应的“触发器”。 Prompt Engineering&#xff0c;即提示工程&#xff0c;是近年来随着大型语言模型&#xff08;LLM&#xff0c;Larg…...

滚雪球学Oracle[3.3讲]:数据定义语言(DDL)

全文目录&#xff1a; 前言一、约束的高级使用1.1 主键&#xff08;Primary Key&#xff09;案例演示&#xff1a;定义主键 1.2 唯一性约束&#xff08;Unique&#xff09;案例演示&#xff1a;定义唯一性约束 1.3 外键&#xff08;Foreign Key&#xff09;案例演示&#xff1a…...

ssrf学习(ctfhub靶场)

ssrf练习 目录 ssrf类型 漏洞形成原理&#xff08;来自网络&#xff09; 靶场题目 第一题&#xff08;url探测网站下文件&#xff09; 第二关&#xff08;使用伪协议&#xff09; 关于http和file协议的理解 file协议 http协议 第三关&#xff08;端口扫描&#xff09…...

ElasticSearch之网络配置

对官方文档Networking的阅读笔记。 ES集群中的节点&#xff0c;支持处理两类通信平面 集群内节点之间的通信&#xff0c;官方文档称之为transport layer。集群外的通信&#xff0c;处理客户端下发的请求&#xff0c;比如数据的CRUD&#xff0c;检索等&#xff0c;官方文档称之…...

【C语言进阶】系统测试与调试

1. 引言 在开始本教程的深度学习之前&#xff0c;我们需要了解整个教程的目标及其结构&#xff0c;以及为何进阶学习是提升C语言技能的关键。 目标和结构&#xff1a; 教程目标&#xff1a;本教程旨在通过系统化的学习&#xff0c;从单元测试、系统集成测试到调试技巧&#xf…...

多个单链表的合成

建立两个非递减有序单链表&#xff0c;然后合并成一个非递增有序的单链表。 注意&#xff1a;建立非递减有序的单链表&#xff0c;需要采用创建单链表的算法 输入格式: 1 9 5 7 3 0 2 8 4 6 0 输出格式: 9 8 7 6 5 4 3 2 1 输入样例: 在这里给出一组输入。例如&#xf…...

『建议收藏』ChatGPT Canvas功能进阶使用指南!

大家好&#xff0c;我是木易&#xff0c;一个持续关注AI领域的互联网技术产品经理&#xff0c;国内Top2本科&#xff0c;美国Top10 CS研究生&#xff0c;MBA。我坚信AI是普通人变强的“外挂”&#xff0c;专注于分享AI全维度知识&#xff0c;包括但不限于AI科普&#xff0c;AI工…...

Ollama 运行视觉语言模型LLaVA

Ollama的LLaVA&#xff08;大型语言和视觉助手&#xff09;模型集已更新至 1.6 版&#xff0c;支持&#xff1a; 更高的图像分辨率&#xff1a;支持高达 4 倍的像素&#xff0c;使模型能够掌握更多细节。改进的文本识别和推理能力&#xff1a;在附加文档、图表和图表数据集上进…...

gdb 调试 linux 应用程序的技巧介绍

使用 gdb 来调试 Linux 应用程序时&#xff0c;可以显著提高开发和调试的效率。gdb&#xff08;GNU 调试器&#xff09;是一款功能强大的调试工具&#xff0c;适用于调试各类 C、C 程序。它允许我们在运行程序时检查其状态&#xff0c;设置断点&#xff0c;跟踪变量值的变化&am…...

Java项目实战II基于Java+Spring Boot+MySQL的房产销售系统(源码+数据库+文档)

目录 一、前言 二、技术介绍 三、系统实现 四、文档参考 五、核心代码 六、源码获取 全栈码农以及毕业设计实战开发&#xff0c;CSDN平台Java领域新星创作者 一、前言 随着房地产市场的蓬勃发展&#xff0c;房产销售业务日益复杂&#xff0c;传统的手工管理方式已难以满…...

aws(学习笔记第一课) AWS CLI,创建ec2 server以及drawio进行aws画图

aws(学习笔记第一课) 使用AWS CLI 学习内容&#xff1a; 使用AWS CLI配置密钥对创建ec2 server使用drawio&#xff08;vscode插件&#xff09;进行AWS的画图 1. 使用AWS CLI 注册AWS账号 AWS是通用的云计算平台&#xff0c;可以提供ec2&#xff0c;vpc&#xff0c;SNS以及clo…...

【Python】Eventlet 异步网络库简介

Eventlet 是一个 Python 的异步网络库&#xff0c;它使用协程&#xff08;green threads&#xff09;来简化并发编程。通过非阻塞的 I/O 操作&#xff0c;Eventlet 使得你可以轻松编写高性能的网络应用程序&#xff0c;而无需处理复杂的回调逻辑或编写多线程代码。它广泛应用于…...

【JNI】数组的基本使用

在上一期讲了基本类型的基本使用&#xff0c;这期来说一说数组的基本使用 HelloJNI.java&#xff1a;实现myArray函数&#xff0c;把一个整型数组转换为双精度型数组 public class HelloJNI { static {System.loadLibrary("hello"); }private native String HelloW…...

React跨平台

React的跨平台应用开发详解如下&#xff1a; 一、跨平台能力 React本身是一个用于构建用户界面的JavaScript库&#xff0c;但它通过React Native等框架实现了跨平台应用开发的能力。React Native允许开发者使用JavaScript和React来编写原生应用&#xff0c;这些应用可以在iOS和…...

如何在 SQL 中更新表中的记录?

当你需要修改数据库中已存在的数据时&#xff0c;UPDATE 语句是你的首选工具。 这允许你更改表中一条或多条记录的特定字段值。 下面我将详细介绍如何使用 UPDATE 语句&#xff0c;并提供一些开发建议和注意事项。 基础用法 假设我们有一个名为 employees 的表&#xff0c;…...

宠物饮水机的水箱低液位提醒如何实现?

ICMAN液位检测芯片轻松实现宠物饮水机的水箱低液位提醒功能&#xff01; 工作原理 &#xff1a; 基于双通道电容式单点液位检测原理 方案特点&#xff1a; 液位检测精度高达1mm&#xff0c;超强抗干扰&#xff0c;动态CS 10V 为家用电器水位提醒的应用提供了一种简单而又有…...

EXCEL_光标百分比

Public Sub InitCells()Dim iSheet As LongFor iSheet Sheets.Count To 1 Step -1Sheets(iSheet).ActivateActiveWindow.Zoom 85ActiveWindow.ScrollRow 1ActiveWindow.ScrollColumn 1Sheets(iSheet).Range("A1").ActivateNext iSheetEnd Sub对日项目中的文档满天…...

(一)Web 网站服务之 Apache

一、Apache 的作用和特点 作用&#xff1a;Apache 是一款开源的网站服务器端软件&#xff0c;为网站的运行提供了稳定的基础。特点&#xff1a; 开源免费&#xff1a;这使得任何人都可以免费使用和修改它。模块化设计&#xff1a;具有高度的灵活性&#xff0c;可以根据需求选择…...

英语词汇小程序小程序|英语词汇小程序系统|基于java的四六级词汇小程序设计与实现(源码+数据库+文档)

英语词汇小程序 目录 基于java的四六级词汇小程序设计与实现 一、前言 二、系统功能设计 三、系统实现 四、数据库设计 1、实体ER图 五、核心代码 六、论文参考 七、最新计算机毕设选题推荐 八、源码获取&#xff1a; 博主介绍&#xff1a;✌️大厂码农|毕设布道师&a…...

AI学习指南深度学习篇-学习率衰减的实现机制

AI学习指南深度学习篇-学习率衰减的实现机制 前言 在深度学习中&#xff0c;学习率是影响模型训练的重要超参数之一。合理的学习率设置不仅可以加速模型收敛&#xff0c;还可以避免训练过程中出现各种问题&#xff0c;如过拟合或训练不收敛。学习率衰减是一种动态调整学习率的…...

My_qsort() -自己写的 qsort 函数

2024 - 10 - 05 - 笔记 - 21 作者(Author)&#xff1a;郑龙浩 / 仟濹(网名) My_qsort()- 自己写的qsort函数 My_qsort为自己写的qsort函数&#xff0c;但是采用的不是快速排序&#xff0c;而是冒泡排序&#xff0c;是为了模仿qsort函数而尝试写出来的函数。 思路&#xff1a…...

《向量数据库指南》——Mlivus Cloud打造生产级AI应用利器

哈哈,各位向量数据库和AI应用领域的朋友们,大家好!我是大禹智库的向量数据库高级研究员王帅旭,也是《向量数据库指南》的作者。今天,我要和大家聊聊如何使用Mlivus Cloud来搭建生产级AI应用。这可是个热门话题哦,相信大家都非常感兴趣! 《向量数据库指南》 使用Mlivus …...

Electron 进程通信

预加载&#xff08;preload&#xff09;脚本只能访问部分 Node.js API&#xff0c;但是主进程可以访问全部API。此时&#xff0c;需要使用进程通信。 比如&#xff0c;在preload.js中&#xff0c;不能访问__dirname&#xff0c;不能使用 Node 中的 fs 模块&#xff0c;但主进程…...