GRU神经网络理解
全文参考以下B站视频及《神经网络与深度学习》邱锡鹏,侧重对GPU模型的理解,初学者入门自用记录,有问题请指正【重温经典】GRU循环神经网络 —— LSTM的轻量级版本,大白话讲解_哔哩哔哩_bilibili

更新门、重置门、学习与输出
注:一般来说, 是在时间步
t 上的数值特征集合,比如股价预测模型中, 是
时刻股价
这里为了理解,假设是已有课程的学习笔记,
表明我们要学习机器学习这一课程
= 【高数,线代,概率论,音乐欣赏,Python编程】
= 【机器学习】
1.重置门:控制筛选,判断哪些是对于机器学习有用的笔记,参与本轮学习

高数、线代、概率论、Python编程与机器学习相关性较强,而音乐欣赏与之无关
故 = 【0.5,0.9,0.6,0,1.0】,这个向量表示对机器学习的有用程度,之后与
相乘进行筛选
2.更新门:哪些内容是有用的需要保留到未来

= 【高数,线代,概率论,音乐欣赏,Python编程
= 【1,1,1,0,1】
我的理解(不知道对不对):重置门和更新门的计算方式类似,但神经网络训练参数不同。用处也不同,重置门用于参与本轮的学习,更新门用于判断哪些信息需要保留到未来。
3.学习

(1)与
对应相乘,即
= 【0.5,0.9,0.6,0,1.0】
= 【高数,线代,概率论,音乐欣赏,Python编程】
= 【0.5高数,0.9线代,0.6概率论,0,Python编程】
(2)加入,即
【0.5高数,0.9线代,0.6概率论,机器学习,Python编程】
(3)tanh相当于对以上笔记进行学习,学习的结果笔记用表示
= 【微积分,矩阵乘法,假设检验,决策树,Python】
4.输出

对于学习后的结果与之前的笔记具有重复性,所以需要删除重复内容。删除的依据就是,即删除已确定有用的笔记。再与确定有用的笔记进行向量拼接。
=【高数,线代,概率论,音乐欣赏,Python编程】
= 【1,1,1,0,1】
= 【高数,线代,概率论,0,Python编程】
= 【微积分,矩阵乘法,假设检验,决策树,Python】
= 【0,0,0,1,0】
= 【0,0,0,决策树,0】
向量拼接
最终结果=【高数,线代,概率论,决策树,Python】
相关文章:
GRU神经网络理解
全文参考以下B站视频及《神经网络与深度学习》邱锡鹏,侧重对GPU模型的理解,初学者入门自用记录,有问题请指正【重温经典】GRU循环神经网络 —— LSTM的轻量级版本,大白话讲解_哔哩哔哩_bilibili 更新门、重置门、学习与输出 注&a…...
Windows 10、Office 2016/2019 和 PPTP 和 L2TP协议即将退役,企业应尽早做好准备
关心微软技术和产品的朋友一定对这个网站很熟悉:https://microsoftgraveyard.com/,这里静静的躺着很多微软技术和产品。近日,微软又在准备一场新的“告别仪式”了,这次是 Windows 10、Office 2016/2019 和一些老旧的协议与技术。让…...
论文阅读:Guided Linear Upsampling
今天介绍一篇有趣的文章,Guided Linear Upsampling,基于引导的线性上采样,这是发表在 ACM transaction on Graphic 的一篇工作。 Abstract 引导上采样是加速高分辨率图像处理的一种有效方法。在本文中,文章作者提出了一种简单而…...
深度图和RGB图对齐
坐标系间的转换_坐标系转换-CSDN博客 深度图与彩色图的配准与对齐_彩色 深度 配准-CSDN博客 kinect 2.0 SDK学习笔记(四)--深度图与彩色图对齐_mapdepthframetocolorspace-CSDN博客 相机标定(三)-相机成像模型_相机小孔成像模型…...
滑动窗口与TCP的缓冲区(buff)的关系
滑动窗口与TCP的缓冲区(buff)有直接关联。 滑动窗口机制是TCP协议中用于流量控制和拥塞控制的重要机制。滑动窗口实际上是一个操作系统开辟的缓存空间,用于指定无需等待确认应答即可继续发送数据的最大值。这个窗口大小(win&…...
一款好用的搜索软件——everthing(搜索比文件资源管理器快)
everthing官网链接 在官网选择下载 1.下载后双击打开 2.点击OK(需要其他语言自己选择) 3.选择安装位置(路径最好别带中文和空格) 继续点击下一步 4. 点击下一步 5.继续点击安装 6.然后就完成了 7.点击打开然后就可以搜索了...
C#WPF的App.xaml启动第一个窗体的3种方式
WPF的App.xaml启动第一个窗体的3种方式 1.使用App.xaml的StartupUri属性启动(推荐使用) 在App.xaml文件中,你可以设置StartupUri属性来指定启动时显示的第一个窗口: <Application x:Class"浅看一眼WPF.App"xmlns&…...
【JAVA毕设】基于JAVA的酒店管理系统
一、项目介绍 本系统前端框架采用了比较流行的渐进式JavaScript框架Vue.js。使用Vue-Router实现动态路由,Ajax实现前后端通信,Element-plus组件库使页面快速成型。后端部分:采用SpringBoot作为开发框架,同时集成MyBatis、Redis、…...
聚类--机器学习西瓜书阅读笔记(六)
无监督学习:通过对无标记训练样本的学习,揭示数据内在规律和性质。 聚类试图将数据集中的样本划分为若干不相交的子集,聚类过程自动形成簇结构,簇对应的语义需要子集命名把握。 聚类过程可以作为单独的过程,寻找数据…...
OpenHarmony(1)开发环境搭建
一:开源项目 OpenHarmony是由开放原子开源基金会(OpenAtom Foundation)孵化及运营的开源项目,目标是面向全场景、全连接、全智能时代,基于开源的方式,搭建一个智能终端设备操作系统的框架和平台࿰…...
Triton服务在ASR语音识别系统中的实现
Triton服务在ASR语音识别系统中的实现 一、引言二、环境准备1. 硬件环境2. 软件环境 三、模型选择与训练1. 数据准备2. 模型架构3. 模型训练 四、模型转换与优化1. 模型转换2. 模型优化 五、配置Triton服务1. 安装Triton服务2. 创建模型仓库 一、引言 自动语音识别(…...
Typora一款极简Markdown文档编辑、阅读器,实时预览,所见即所得,多主题,免费生成序列号!
文章目录 Typora下载安装Typora序列号生成 Typora是一款Markdown编辑器和阅读器,风格极简,实时预览,所见即所得,支持MacOS、Windows、Linux操作系统,有图片和文字、代码块、数学公式、图表、目录大纲、文件管理、导入导…...
python机器人编程——用python调用API控制wifi小车的实例程序
目录 一、前言二、一个客户端的简单实现2.1 首先定义一个类及属性2.2 其次定义连接方法2.3 定义一些回调函数2.4 定义发送小车指令方法2.5 定义一个正常关闭方法 三、python编程控制小车的demo实现四、小结PS.扩展阅读ps1.六自由度机器人相关文章资源ps2.四轴机器相关文章资源p…...
面试学习整理-线程池
线程池 简介JUC包线程池介绍线程池最常问也最常用-参数线程执行分析-线程是怎么运行的进程和线程的区别Executors工厂类提供四种线程池Executors和ThreaPoolExecutor创建线程池的区别两种提交任务的方法spring集成的线程池 简介 线程池作为实际使用和面试较多的技能区, 学习是…...
Debian会取代CentOS成为更主流的操作系统吗?
我们知道,其实之前的话,国内用户对centos几乎是情有独钟的偏爱,很多人都喜欢选择centos系统,可能是受到一些原因的影响导致的吧,比如他相当于免费的红帽子系统,或者一些教程和网上的资料都推荐这个系统&…...
网络安全领域推荐证书介绍及备考指南
在网络安全领域,拥有专业认证不仅可以证明个人的专业能力,还能帮助在实际工作中应用先进的技术和知识。以下是几种热门的网络安全证书介绍及备考指南。 1. OSCP (Offensive Security Certified Professional) 证书简介 OSCP是针对渗透测试领域的入门级…...
SpringBoot项目ES6.8升级ES7.4.0
SpringBoot项目ES6.8.15 升级到 ES7.4.0 前言 由于公司内部资产统一整理,并且公司内部部署有多个版本的es集群,所以有必要将目前负责项目的ES集群升级到公司同一版本7.4.0。es6到es7的升级变化还是挺大的,因此在这里做一下简单记录…...
深度学习 之 模型部署 使用Flask和PyTorch构建图像分类Web服务
引言 随着深度学习的发展,图像分类已成为一项基础的技术,被广泛应用于各种场景之中。本文将介绍如何使用Flask框架和PyTorch库来构建一个简单的图像分类Web服务。通过这个服务,用户可以通过HTTP POST请求上传花朵图片,然后由后端…...
MFC工控项目实例二十六创建数据库
承接专栏《MFC工控项目实例二十五多媒体定时计时器》 用选取的型号为文件名建立文件夹,再在下面用测试的当天的时间创建文件夹,在这个文件中用测试的时/分/秒为数据库名创建Adcess数据库。 1、在StdAfx.h文件最下面添加代码 #import "C:/Program F…...
springmvc源码流程解析(一)
Springmvc 是基于servlet 规范来完成的一个请求响应模块,也是spring 中比较大的一个 模块,现在基本上都是零xml 配置了,采用的是约定大于配置的方式,所以我们的springmvc 也是采用这种零xml 配置的方式。 要完成这种过程ÿ…...
Ubuntu系统下交叉编译openssl
一、参考资料 OpenSSL&&libcurl库的交叉编译 - hesetone - 博客园 二、准备工作 1. 编译环境 宿主机:Ubuntu 20.04.6 LTSHost:ARM32位交叉编译器:arm-linux-gnueabihf-gcc-11.1.0 2. 设置交叉编译工具链 在交叉编译之前&#x…...
Cursor实现用excel数据填充word模版的方法
cursor主页:https://www.cursor.com/ 任务目标:把excel格式的数据里的单元格,按照某一个固定模版填充到word中 文章目录 注意事项逐步生成程序1. 确定格式2. 调试程序 注意事项 直接给一个excel文件和最终呈现的word文件的示例,…...
ESP32 I2S音频总线学习笔记(四): INMP441采集音频并实时播放
简介 前面两期文章我们介绍了I2S的读取和写入,一个是通过INMP441麦克风模块采集音频,一个是通过PCM5102A模块播放音频,那如果我们将两者结合起来,将麦克风采集到的音频通过PCM5102A播放,是不是就可以做一个扩音器了呢…...
使用 SymPy 进行向量和矩阵的高级操作
在科学计算和工程领域,向量和矩阵操作是解决问题的核心技能之一。Python 的 SymPy 库提供了强大的符号计算功能,能够高效地处理向量和矩阵的各种操作。本文将深入探讨如何使用 SymPy 进行向量和矩阵的创建、合并以及维度拓展等操作,并通过具体…...
初探Service服务发现机制
1.Service简介 Service是将运行在一组Pod上的应用程序发布为网络服务的抽象方法。 主要功能:服务发现和负载均衡。 Service类型的包括ClusterIP类型、NodePort类型、LoadBalancer类型、ExternalName类型 2.Endpoints简介 Endpoints是一种Kubernetes资源…...
保姆级教程:在无网络无显卡的Windows电脑的vscode本地部署deepseek
文章目录 1 前言2 部署流程2.1 准备工作2.2 Ollama2.2.1 使用有网络的电脑下载Ollama2.2.2 安装Ollama(有网络的电脑)2.2.3 安装Ollama(无网络的电脑)2.2.4 安装验证2.2.5 修改大模型安装位置2.2.6 下载Deepseek模型 2.3 将deepse…...
return this;返回的是谁
一个审批系统的示例来演示责任链模式的实现。假设公司需要处理不同金额的采购申请,不同级别的经理有不同的审批权限: // 抽象处理者:审批者 abstract class Approver {protected Approver successor; // 下一个处理者// 设置下一个处理者pub…...
手机平板能效生态设计指令EU 2023/1670标准解读
手机平板能效生态设计指令EU 2023/1670标准解读 以下是针对欧盟《手机和平板电脑生态设计法规》(EU) 2023/1670 的核心解读,综合法规核心要求、最新修正及企业合规要点: 一、法规背景与目标 生效与强制时间 发布于2023年8月31日(OJ公报&…...
Python网页自动化Selenium中文文档
1. 安装 1.1. 安装 Selenium Python bindings 提供了一个简单的API,让你使用Selenium WebDriver来编写功能/校验测试。 通过Selenium Python的API,你可以非常直观的使用Selenium WebDriver的所有功能。 Selenium Python bindings 使用非常简洁方便的A…...
区块链技术概述
区块链技术是一种去中心化、分布式账本技术,通过密码学、共识机制和智能合约等核心组件,实现数据不可篡改、透明可追溯的系统。 一、核心技术 1. 去中心化 特点:数据存储在网络中的多个节点(计算机),而非…...
