机器学习基础:算法如何让 AI 自我学习
大家好,我是Shelly,一个专注于输出AI工具和科技前沿内容的AI应用教练,体验过300+款以上的AI应用工具。关注科技及大模型领域对社会的影响10年+。关注我一起驾驭AI工具,拥抱AI时代的到来。
AI工具集1:大厂AI工具【共23款】,一次性奉上,今天是百度和阿里
AI工具集2:大厂AI工具【共12款】,一次性奉上,看看腾讯和字节的宝贝
人工智能&AIGC术语100条 Shelly聊AI-重磅发布
Shelly聊AI
AI 科技自媒体、AI微课、AI好物、AI技术前沿
在当今的科技时代,人工智能(AI)已经成为了一个热门话题。AI 能够完成各种复杂的任务,从图像识别到自然语言处理,从智能推荐系统到自动驾驶汽车。而这一切的背后,机器学习算法起着至关重要的作用。机器学习使得 AI 能够自我学习,不断提高性能,适应不同的任务和环境。
一、机器学习的基本概念
机器学习是一种让计算机自动学习的方法,它不需要明确的编程指令,而是通过分析数据来发现模式和规律。机器学习算法可以分为监督学习、无监督学习和强化学习三大类。
-
监督学习
监督学习是指在已知输入和输出的情况下,让计算机学习从输入到输出的映射关系。例如,在图像分类任务中,给定一组带有标签的图像(如猫、狗、鸟等),监督学习算法会学习如何根据图像的特征来预测其类别。常见的监督学习算法有线性回归、逻辑回归、决策树、支持向量机和神经网络等。 -
无监督学习
无监督学习是在没有明确输出的情况下,让计算机从数据中发现潜在的模式和结构。例如,在聚类任务中,无监督学习算法会将数据分成不同的组,使得同一组内的数据具有相似的特征。常见的无监督学习算法有聚类算法(如 K-Means 聚类)、主成分分析(PCA)和自编码器等。 -
强化学习
强化学习是让计算机通过与环境的交互来学习最优的行为策略。在强化学习中,计算机被称为智能体,它通过观察环境状态,采取行动,并根据获得的奖励来调整自己的行为策略。强化学习的目标是最大化累计奖励。常见的强化学习算法有 Q-learning、深度 Q 网络(DQN)和策略梯度算法等。
二、算法如何让 AI 自我学习
-
数据收集与预处理
机器学习算法的第一步是收集和预处理数据。数据可以来自各种来源,如传感器、数据库、互联网等。在收集到数据后,需要对数据进行清洗、去噪、归一化等预处理操作,以提高数据的质量和可用性。 -
特征提取
特征提取是将原始数据转换为适合机器学习算法处理的特征表示。特征提取的目的是提取数据中的关键信息,减少数据的维度,提高算法的效率和性能。常见的特征提取方法有主成分分析、线性判别分析、词袋模型等。 -
模型选择与训练
在选择了合适的特征表示后,需要选择合适的机器学习算法和模型,并使用训练数据对模型进行训练。在训练过程中,算法会不断调整模型的参数,以最小化损失函数或最大化奖励函数。损失函数衡量了模型预测结果与真实结果之间的差异,而奖励函数则衡量了智能体在环境中的表现。 -
模型评估与优化
在训练完成后,需要对模型进行评估,以确定其性能和泛化能力。常用的评估指标有准确率、召回率、F1 值、均方误差等。如果模型的性能不满足要求,可以通过调整算法参数、增加数据量、使用更复杂的模型等方法来进行优化。 -
模型部署与更新
在模型评估通过后,可以将模型部署到实际应用中。在实际应用中,模型需要不断地接收新的数据,并根据新数据进行更新和优化,以保持其性能和适应性。
三、机器学习算法的应用
-
图像识别
图像识别是机器学习的一个重要应用领域。通过使用深度学习算法,如卷积神经网络(CNN),可以实现对图像的自动分类、目标检测和分割等任务。图像识别技术已经广泛应用于安防、医疗、交通等领域。 -
自然语言处理
自然语言处理是让计算机理解和处理人类语言的技术。机器学习算法在自然语言处理中有着广泛的应用,如文本分类、情感分析、机器翻译、语音识别等。自然语言处理技术已经成为了人工智能的一个重要分支,为人们的生活和工作带来了很大的便利。 -
智能推荐系统
智能推荐系统是根据用户的兴趣和行为,为用户推荐个性化的内容和产品的系统。机器学习算法可以通过分析用户的历史行为数据,预测用户的兴趣和需求,为用户提供更加精准的推荐服务。智能推荐系统已经广泛应用于电商、社交网络、视频网站等领域。 -
自动驾驶汽车
自动驾驶汽车是一种能够自主行驶的汽车,它需要依靠各种传感器和机器学习算法来感知环境、做出决策和控制车辆。机器学习算法在自动驾驶汽车中有着至关重要的作用,如目标检测、路径规划、决策制定等。自动驾驶汽车技术的发展将为人们的出行带来更加安全、便捷和高效的体验。
四、机器学习的挑战与未来发展
-
数据质量和隐私问题
机器学习算法需要大量的高质量数据来进行训练,但是在实际应用中,数据的质量和隐私问题往往是一个挑战。数据质量问题包括数据的准确性、完整性、一致性等,而数据隐私问题则涉及到用户的个人信息和隐私保护。未来,需要加强对数据质量和隐私的保护,提高数据的可用性和安全性。 -
模型的可解释性和可靠性
机器学习模型往往是一个黑盒子,难以解释其决策过程和结果。这在一些关键领域,如医疗、金融等,可能会带来风险和不确定性。未来,需要加强对机器学习模型的可解释性和可靠性的研究,提高模型的透明度和可信度。 -
计算资源和效率问题
机器学习算法需要大量的计算资源和时间来进行训练和优化,这在一些资源受限的环境下可能会成为一个挑战。未来,需要发展更加高效的机器学习算法和计算框架,提高算法的效率和性能。 -
跨领域和多模态学习
现实世界中的问题往往是复杂的,需要综合考虑多个领域和多种模态的数据。未来,需要发展跨领域和多模态的机器学习算法,提高算法的通用性和适应性。
总之,机器学习算法是让 AI 自我学习的关键。通过数据收集与预处理、特征提取、模型选择与训练、模型评估与优化和模型部署与更新等步骤,机器学习算法可以让 AI 不断学习和提高性能,适应不同的任务和环境。
机器学习算法已经在图像识别、自然语言处理、智能推荐系统、自动驾驶汽车等领域取得了显著的成果,但也面临着数据质量和隐私、模型可解释性和可靠性、计算资源和效率、跨领域和多模态学习等挑战。
未来,随着技术的不断发展,机器学习算法将在更多的领域得到应用,为人们的生活和工作带来更大的便利和价值。
相关文章:

机器学习基础:算法如何让 AI 自我学习
大家好,我是Shelly,一个专注于输出AI工具和科技前沿内容的AI应用教练,体验过300款以上的AI应用工具。关注科技及大模型领域对社会的影响10年。关注我一起驾驭AI工具,拥抱AI时代的到来。 AI工具集1:大厂AI工具【共23款…...

25届字节跳动 抖音NLP算法工程师 面经
目录 一面/技术面 2024/08/30二面/技术面 2024/09/13 一面/技术面 2024/08/30 深挖实习(最近的一段实习)深挖论文(让我共享屏幕,然后对着自己的论文讲)论文做了多久完成的?主要都做了哪些工作?…...

转行网络工程师以后的就业前景如何?
就业前景如何本质上取决于你在这行业的发展状况,而发展状况又主要由你的技术水平和与人交流的能力所决定。 如果你的技术能力仅限于"安服仔"、"脚本小子"等入门级水平,那你的职业发展可能会像浮萍一样漂泊不定。但如果你能轻松编写…...

docker 和 containerd 关系
containerd 是一个开源的容器运行时,它是用来管理容器生命周期的守护进程。containerd 支持 Docker 和其他容器格式,并且是许多现代容器编排系统(如 Kubernetes)的基础组件之一。 containerd 提供了一个命令行工具 ctr࿰…...

算法-二叉树的最大路径和
为了找到二叉树的最大路径和,我们需要考虑所有可能的路径,包括不经过根节点的路径,所以其实如果你从整体上来一条路径一条路径的遍历,太复杂,我们可以换个思路,从每个节点出发,就把那个节点当成…...

解决url含%导致404错误
String imageUrl;// 使用WebClient下载图片WebClient webClient WebClientUtil.getWebClient();Mono<ByteArrayOutputStream> byteArrayOutputStreamMono webClient.get().uri(imageUrl).retrieve().bodyToFlux(DataBuffer.class) // 获取图片内容的DataBuffer流.reduc…...

[Linux Codec驱动]音频路由概念
1. 音频路由的基本概念 源(Source):音频信号的发出方,通常是一个音频输入设备,如麦克风、音频播放设备等。接收端(Sink):音频信号的接收方,通常是音频输出设备ÿ…...

母线槽温度监测的哪个部位?安科瑞母线槽测温解决方案-安科瑞黄安南
安科瑞生产厂家:黄安南 壹捌柒/陆壹伍/零陆贰叁柒 母线槽简单来说充当着电缆的角色只不过它是大电流的输送设备,一般是铜排或者绿排做导体,用非烯性绝缘材料做支撑,搭配金属外壳。相对于电缆来说母线槽的载流能力强、电能损耗低、…...

《深度学习》—— 模型的部署
文章目录 一、部署方式二、部署步骤三、注意事项 深度学习中模型的部署是将训练好的模型应用到实际场景中的过程,以下是对深度学习模型部署的详细解析: 一、部署方式 嵌入式设备部署:将深度学习模型部署到嵌入式设备中,如智能手机…...

多IP访问浏览器
添加多个ip地址 nmcli connection modify ens160 ipv4.method manual ipv4.addresses 192.168.61.100/24 ipv4.addresses 192.168.61.200/24 ipv4.addresses 192.168.61.128 ipv4.gateway 192.168.61.2 ipv4.dns 114.114.114.114...

1024程序员节福利放送 | AI 照片修复魔法,一键重拾旧时记忆
程序员充电礼包 今天是 1024 程序员节,小贝特意为大家准备了重磅福利!新用户使用邀请码「1024」注册 http://OpenBayes.com,即可获得 20 小时单卡 A6000 的免费使用时长,价值 80 元,资源 1 个月有效。仅限今日…...

OSPF特殊区域及其他特性
不用的链路这状态信息没必要一直保存,要不路由器承受不了。用OSPF 特殊区域解决 1. Stub区域和Totally Stub区域 R1作为ASBR引入多个外部网段,如果Area 2是普通区域,则R3将向该区域注入5类和4类LSA。 当把Area 2配置为Stub区域后:…...

动态量化:大模型在端侧CPU快速推理方案
作为一款高性能的推理引擎框架,MNN高度关注Transformer模型在移动端的部署并持续探索优化大模型在端侧的推理方案。本文介绍权重量化的模型在MNN CPU后端的推理方案:动态量化。动态量化指在运行时对浮点型feature map数据进行8bit量化,然后与…...

什么是零拷贝以及其应用场景是什么?
写在前面 本文看下什么是零拷贝,以及其具体的应用场景有哪些。 1:什么是零拷贝 想要解释清楚什么是零拷贝,需要先来看下常规的阻塞io一次io的过程,这里以从文件读取内容然后写到socket为例来看下,如下: …...

开源(open source)是什么?为什么要开源?
为什么开源这个问题挺复杂,这里就从社会面以及个人两个角度来说。当然个人层面的开源其实是建立在社会面形成开源氛围后开始的。 社会面开源 这里举一个例子,既互联网从 web1.0 到 web3.0 (开源 → 闭源 → 再开源)的历程&#…...

基于Spring Boot的论坛网站:从零到部署
2相关技术 2.1 MYSQL数据库 MySQL是一个真正的多用户、多线程SQL数据库服务器。 是基于SQL的客户/服务器模式的关系数据库管理系统,它的有点有有功能强大、使用简单、管理方便、安全可靠性高、运行速度快、多线程、跨平台性、完全网络化、稳定性等,非常…...

vue开发的一个小插件vue.js devtools
可打开谷歌商城的情况下,不可打开的可以到极简插件里面去下载 极简插件官网_Chrome插件下载_Chrome浏览器应用商店 搜索vue即可...

GraphLLM:基于图的框架,通过大型语言模型处理数据
GraphLLM是一个创新的框架,它允许用户通过一个或多个大型语言模型(LLM)来处理数据。这个框架不仅提供了一个强大的代理,能够执行网络搜索和运行Python代码,还提供了一套工具来抓取网页数据,并将其重新格式化…...

HarmonyOS 5.0应用开发——Navigation实现页面路由
【高心星出品】 Navigation实现页面路由 Navigation:路由导航的根视图容器,一般作为页面(Entry)的根容器去使用,包括单页面(stack)、分栏(split)和自适应(a…...

物联网行业应用实训室建设方案
一、建设背景 随着物联网技术的迅猛发展和广泛应用,物联网产业已跃升为新时代的经济增长引擎,对于产业升级和社会信息化水平的提升具有举足轻重的地位。因此,为了满足这一领域的迫切需求,培养具备物联网技术应用能力的优秀人才成…...

SOLIDWORKS 2025更灵活零件建模
SOLIDWORKS 2025更灵活零件建模 北京众联亿诚是达索官方授权的SOLIDWORKS经销商,专业经销SOLIDWORKS正版软件并提供免费试用、培训认证、二次开发等增值服务。 在工程设计领域,SOLIDWORKS作为一款功能强大的三维CAD软件,一直以其优越的性能…...

智能巡检机器人的大模型训练
随着工业自动化和智能化进程的不断加快,智能巡检机器人已成为维护和管理复杂设备的重要工具。在电力、石油化工、煤矿、数据中心等行业中,智能巡检机器人通过自主巡检、故障检测等功能,提高了设备管理的效率和安全性。大模型训练在智能巡检机…...

RabbitMQ系列学习笔记(九)--路由模式
文章目录 一、路由模式原理二、多重绑定三、路由模式实战1、消费者代码2、生产者代码3、运行结果分析 本文参考 尚硅谷RabbitMQ教程丨快速掌握MQ消息中间件rabbitmq RabbitMQ 详解 Centos7环境安装Erlang、RabbitMQ详细过程(配图) 一、路由模式原理 使用发布订阅模式时&#x…...

[OS] pthreads-1
线程的基本概念 线程是进程中的一个单一的执行流。一个进程可以包含多个线程,这些线程共享进程中的资源,并且在相同的地址空间中执行。多线程是提高应用程序并行性的流行方法。例如,在浏览器中,不同的标签页可以视作独立的线程。…...

ThreeJS入门(137):THREE.StringKeyframeTrack 知识详解,示例代码
作者: 还是大剑师兰特 ,曾为美国某知名大学计算机专业研究生,现为国内GIS领域高级前端工程师,CSDN知名博主,深耕openlayers、leaflet、mapbox、cesium,webgl,ThreeJS,canvas…...

用大模型或者向量模型比如huggingface上的模型,处理一批图片,对该图片进行分类,检索
要使用大模型或向量模型对图片进行分类和检索,通常可以采用以下几种方法: 1. **图像分类**:使用预训练的图像分类模型(如ResNet、EfficientNet等)对图片进行分类。 2. **图像特征提取**:使用预训练的模型(如CLIP、ResNet等)提取图像的特征向量,然后进行相似度检索。 …...

Mac 使用 zsh 终端提示 zsh: killed 的问题
我的脚本的内容为: #!/bin/bashset -epids$(ps -ef | grep consul | grep -v grep | awk {print $2})for pid in $pids; doecho "kill process: $pid"kill -9 $pid donecd $(dirname $0)nohup ./consul agent -dev > nohup.log &可以看到这是一个…...

数字后端零基础入门系列 | Innovus零基础LAB学习Day6
今天没有具体的数字IC后端lab实验。今天的重点是熟悉掌握静态时序分析STA中的几类timing path以及setup和hold检查机制(包含setup和hold计算公式)。 芯片流片失败的那些故事 数字后端零基础入门系列 | Innovus零基础LAB学习Day5 等大家把今天内容学习…...

(Linux驱动学习 -13).SPI驱动实验
目录 一.SPI驱动相关结构体与函数 1.struct spi_master 结构体 2.申请 spi_master - spi_alloc_master 3.释放 spi_master - spi_master_put 4.向内核注册 spi_master - spi_register_master 5.注销掉 spi_master 6.struct spi_driver 结构体 7.向内核注册 spi_driver -…...

Angular 框架入门教程:从安装到路由、服务与状态管理详解
一、引言 在前端开发领域,Angular 是一个强大且流行的框架。它由 Google 维护,基于 TypeScript,采用模块化设计,提供了组件化开发、依赖注入、路由、表单处理等丰富功能,旨在帮助开发者构建高效、可维护的单页应用程序…...