文本相似度方案
文章目录
- SequenceMatcher
- 余弦相似度
- 基于逆向文档频率向量化
SequenceMatcher
from difflib import SequenceMatcher s1 = "1.2 章节标题【abc】"
s2 = "1.2 章节标题【abc】、【she】、【this】"
SequenceMatcher(None, s1, s2).ratio()
# 0.6666666666666666
余弦相似度
- 文本向量化
import jieba # 分词库# 基于词频的向量化
s1_list = list(jieba.cut(s1))
# ['1.2', ' ', '章节', '标题', '【', 'abc', '】']s2_list = list(jieba.cut(s2))
# ['1.2', ' ', '章节', '标题', '【', 'abc', '】', '、', '【', 'she', '】', '、', '【', 'this', '】']# 统计语料库
corpus = set(s1_list) | set(s2_list)
# {' ', '1.2', 'abc', 'she', 'this', '、', '【', '】', '标题', '章节'}# 文档词频统计
arr1 = np.array([s1_list.count(i) for i in corpus])
# array([0, 1, 1, 1, 0, 0, 1, 1, 1, 1])arr2 = np.array([s2_list.count(i) for i in corpus])
# array([2, 1, 1, 1, 1, 1, 1, 1, 3, 3])
- 计算cosine_theta值
from sklearn.metrics.pairwise import cosine_similarity# 计算余弦相似度
score = cosine_similarity(arr1.reshape(1, -1), arr2.reshape(1, -1))
# array([[0.77204865]])
可以看出余弦相似度比普通的SequenceMatcher具有更好的效果。
基于逆向文档频率向量化
ss1 = " ".join(s1_list)In [42]: ss1
Out[42]: '1.2 章节 标题 【 abc 】'In [43]: ss2 = " ".join(s2_list)In [44]: ss2
Out[44]: '1.2 章节 标题 【 abc 】 、 【 she 】 、 【 this 】'In [45]: from sklearn.feature_extraction.text import TfidfVectorizerIn [46]: vector = TfidfVectorizer()In [47]: r = vector.fit_transform([ss1, ss2])In [48]: r
Out[48]:
<2x5 sparse matrix of type '<class 'numpy.float64'>'with 8 stored elements in Compressed Sparse Row format>In [49]: r.toarray()
Out[49]:
array([[0.57735027, 0. , 0. , 0.57735027, 0.57735027],[0.37930349, 0.53309782, 0.53309782, 0.37930349, 0.37930349]])In [50]: rr = r.toarray()In [51]: r
Out[51]:
<2x5 sparse matrix of type '<class 'numpy.float64'>'with 8 stored elements in Compressed Sparse Row format>In [52]: rr
Out[52]:
array([[0.57735027, 0. , 0. , 0.57735027, 0.57735027],[0.37930349, 0.53309782, 0.53309782, 0.37930349, 0.37930349]])
相关文章:
文本相似度方案
文章目录 SequenceMatcher余弦相似度基于逆向文档频率向量化 SequenceMatcher from difflib import SequenceMatcher s1 "1.2 章节标题【abc】" s2 "1.2 章节标题【abc】、【she】、【this】" SequenceMatcher(None, s1, s2).ratio() # 0.6666666666666…...
appium 的工作原理
** 安卓: ** 1.1 appuim 基于 uiautomator2 的原理 appium 服务启动后默认在 4723 端口上创建一个 http 服务,脚本通过服务地址 http://xxxx:4723/wd/hub 和 appium 进行通信 在 初 始 化 脚 本 和 appium 连 接 的 过 程 中 appium 会 向 手 机 就 …...
ECharts饼图-富文本标签,附视频讲解与代码下载
引言: 在数据可视化的世界里,ECharts凭借其丰富的图表类型和强大的配置能力,成为了众多开发者的首选。今天,我将带大家一起实现一个饼图图表,通过该图表我们可以直观地展示和分析数据。此外,我还将提供详…...
关于在windows10系统64位安装luasocket问题
luarocks install luasocket 原本以为按下enter键就会一帆风顺:结果事事出人意料之外。 C:\Users\40341>luarocks install luasocket Installing https://luarocks.org/luasocket-3.1.0-1.src.rockluasocket 3.1.0-1 depends on lua > 5.1 (5.4-1 provided …...
模型拆解(二):GeleNet
文章目录 一、GeleNet1.1编码器:PVT-v2-b21.3D-SWSAM:方向-置换加权空间注意力模块1.4KTM:知识转移模块1.5解码器模块 一、GeleNet 论文:Salient Object Detection in Optical Remote Sensing Images Driven by Transformer&#…...
RTE 2024 隐藏攻略
大家好!想必今年 RTE 大会议程大家都了解得差不多了,这将是一场实时互动和多模态 AI builder 的年度大聚会。 大会开始前,我们邀请了参与大会策划的 RTE 开发者社区和超音速计划的成员们,分享了不同活动的亮点和隐藏攻略。 请收…...
django 部署服务器后 CSS 样式丢失的问题
原因: nginx除了提供反向代理,负载均衡以外,还提供了静(html, css, js)动(视图,模板需要进行解析执行的,或者操作数据库的)分离的功能。 原本django项目中的静态资源存…...
基于springboot的网上服装商城推荐系统的设计与实现
基于springboot的网上服装商城推荐系统的设计与实现 开发语言:Java 框架:springboot JDK版本:JDK1.8 服务器:tomcat7 数据库:mysql 5.7 数据库工具:Navicat11 开发软件:idea 源码获取…...
盘古信息IMS系统助力制造企业释放新质生产力
在全球制造业竞争日益激烈的背景下,提升新质生产力已成为制造企业普遍追求的核心目标。因此,众多制造企业开始对生产流程、管理模式乃至整个企业生态系统进行全面的优化与升级,以期在市场竞争中占据优势地位,迎来更广阔的发展空间…...
ArcGIS 10.8 安装教程
目录 一、ArcGIS10.8二、安装链接三、安装教程四、ArcGIS实战 (一)ArcGIS10.8 1. 概述 ArcGIS 10.8是由美国Esri公司开发的GIS平台,用于处理、分析、显示和管理地理数据,并实现数据共享。它具有新特性和功能,性能更…...
Redis学习笔记(二)--Redis的安装与配置
文章目录 一、Redis的安装1、克隆并配置主机2、安装前的准备工作1.安装gcc2.下载Redis3.上传到Linux 3、安装Redis1.解压Redis2.编译3.安装3.查看bin目录 4、Redis启动与停止1.前台启动2.命令式后台启动3.Redis的停止4.配置式后台启动 二、连接前的配置1、绑定客户端IP2、关闭保…...
软件工程之软件系统设计与软件开发方法
一.软件系统设计 1.体系结构设计就是架构设计,软件设计包含4个方面: 接口(人机界面设计)设计:软件与操作系统、软件与人之间如何交互; 架构(结构)设计:定义软件系统各…...
pip命令行安装pytest 一直报错
其实就是切换不同镜像安装 我最终成功的是阿里云镜像 pip install --trusted-host mirrors.aliyun.com pytest 也可以用其他的 pip install -i https://pypi.org/simple pytest # 或者使用其他的镜像源 pip install -i https://pypi.tuna.tsinghua.edu.cn/simple pytest...
如何在Debian操作系统上安装Doker
本章教程,主要介绍如何在Debian 11 系统上安装Docker。主要使用一键安装Docker脚本和一键卸载脚本来完成。 一、安装Docker #!/bin/bashRED\033[0;31m GREEN\033[0;32m YELLOW\033[0;33m BLUE\033[0;34m NC\033[0mCURRENT_DIR$(cd "$(dirname "$0")…...
代码随想录刷题学习日记
仅为个人记录复盘学习历程,解题思路来自代码随想录 代码随想录刷题笔记总结网址:代码随想录 二叉树的迭代遍历(不使用递归实现遍历) 递归的实现就是:每一次递归调用都会把函数的局部变量、参数值和返回地址等压入调用栈中,递归是通过栈实现…...
OpenText ALM Octane,为您的 DevOps 管道提供质量保证
实现更高水平的敏捷性、可追溯性和可预测性是一个持续的过程。ALM Octane 可帮助您改进开发和测试流程,从而改善整个软件交付价值流中的工作流程。 产品亮点 对基于软件的创新的需求已经加速,扰乱了几乎每个行业,也改变了我们的生活。快速交…...
【python实操】python小程序之参数化以及Assert(断言)
引言 python小程序之参数化以及Assert(断言) 文章目录 引言一、参数化2.1 题目2.2 代码2.3 代码解释 二、Assert(断言)2.1 概念2.1.1 Assert语句的基本语法:2.1.2 基本断言2.1.3 断言函数参数2.1.4 断言前后状态一致 2…...
探索CSS动画下的按钮交互美学
效果演示 这段代码通过SVG和CSS动画创建了一个具有视觉吸引力的按钮,当用户与按钮交互时(如悬停、聚焦或按下),按钮会显示不同的动画效果。 HTML <button class"button"><div class"dots_border"…...
241024-Ragflow离线部署Docker-Rootless环境配置修改
A. 最终效果 B. 文件修改 docker-compose.yml include:- path: ./docker-compose-base.ymlenv_file: ./.envservices:ragflow:depends_on:mysql:condition: service_healthyes01:condition: service_healthyimage: ${RAGFLOW_IMAGE}container_name: ragflow-serverports:- ${…...
网络基础概念:广播域、冲突域与VLAN解析
一、网络基础概念 在现代计算机网络中,广播域、冲突域和虚拟局域网(VLAN)是网络架构和管理的核心概念。了解这些概念对网络性能优化、流量管理和安全性提升至关重要。 二、广播域 1. 定义 广播域是一个网络逻辑区域,在这个区域…...
FFmpeg 低延迟同屏方案
引言 在实时互动需求激增的当下,无论是在线教育中的师生同屏演示、远程办公的屏幕共享协作,还是游戏直播的画面实时传输,低延迟同屏已成为保障用户体验的核心指标。FFmpeg 作为一款功能强大的多媒体框架,凭借其灵活的编解码、数据…...
C++.OpenGL (10/64)基础光照(Basic Lighting)
基础光照(Basic Lighting) 冯氏光照模型(Phong Lighting Model) #mermaid-svg-GLdskXwWINxNGHso {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-GLdskXwWINxNGHso .error-icon{fill:#552222;}#mermaid-svg-GLd…...
【OSG学习笔记】Day 16: 骨骼动画与蒙皮(osgAnimation)
骨骼动画基础 骨骼动画是 3D 计算机图形中常用的技术,它通过以下两个主要组件实现角色动画。 骨骼系统 (Skeleton):由层级结构的骨头组成,类似于人体骨骼蒙皮 (Mesh Skinning):将模型网格顶点绑定到骨骼上,使骨骼移动…...
UR 协作机器人「三剑客」:精密轻量担当(UR7e)、全能协作主力(UR12e)、重型任务专家(UR15)
UR协作机器人正以其卓越性能在现代制造业自动化中扮演重要角色。UR7e、UR12e和UR15通过创新技术和精准设计满足了不同行业的多样化需求。其中,UR15以其速度、精度及人工智能准备能力成为自动化领域的重要突破。UR7e和UR12e则在负载规格和市场定位上不断优化…...
【VLNs篇】07:NavRL—在动态环境中学习安全飞行
项目内容论文标题NavRL: 在动态环境中学习安全飞行 (NavRL: Learning Safe Flight in Dynamic Environments)核心问题解决无人机在包含静态和动态障碍物的复杂环境中进行安全、高效自主导航的挑战,克服传统方法和现有强化学习方法的局限性。核心算法基于近端策略优化…...
基于SpringBoot在线拍卖系统的设计和实现
摘 要 随着社会的发展,社会的各行各业都在利用信息化时代的优势。计算机的优势和普及使得各种信息系统的开发成为必需。 在线拍卖系统,主要的模块包括管理员;首页、个人中心、用户管理、商品类型管理、拍卖商品管理、历史竞拍管理、竞拍订单…...
【C++特殊工具与技术】优化内存分配(一):C++中的内存分配
目录 一、C 内存的基本概念 1.1 内存的物理与逻辑结构 1.2 C 程序的内存区域划分 二、栈内存分配 2.1 栈内存的特点 2.2 栈内存分配示例 三、堆内存分配 3.1 new和delete操作符 4.2 内存泄漏与悬空指针问题 4.3 new和delete的重载 四、智能指针…...
【p2p、分布式,区块链笔记 MESH】Bluetooth蓝牙通信 BLE Mesh协议的拓扑结构 定向转发机制
目录 节点的功能承载层(GATT/Adv)局限性: 拓扑关系定向转发机制定向转发意义 CG 节点的功能 节点的功能由节点支持的特性和功能决定。所有节点都能够发送和接收网格消息。节点还可以选择支持一个或多个附加功能,如 Configuration …...
Leetcode33( 搜索旋转排序数组)
题目表述 整数数组 nums 按升序排列,数组中的值 互不相同 。 在传递给函数之前,nums 在预先未知的某个下标 k(0 < k < nums.length)上进行了 旋转,使数组变为 [nums[k], nums[k1], …, nums[n-1], nums[0], nu…...
VisualXML全新升级 | 新增数据库编辑功能
VisualXML是一个功能强大的网络总线设计工具,专注于简化汽车电子系统中复杂的网络数据设计操作。它支持多种主流总线网络格式的数据编辑(如DBC、LDF、ARXML、HEX等),并能够基于Excel表格的方式生成和转换多种数据库文件。由此&…...
