当前位置: 首页 > news >正文

PHP PDO:安全、灵活的数据持久层解决方案

PHP PDO:安全、灵活的数据持久层解决方案

PHP PDO(PHP Data Objects)是一个轻量级的、具有兼容接口的数据持久层抽象层。它提供了一个统一的API来访问多种数据库系统,如MySQL、PostgreSQL、SQLite、Oracle等。PDO扩展在PHP 5.1.0及以上版本中可用,并已成为PHP社区中处理数据库操作的标准方式。

PDO的优势

1. 数据库无关性

PDO支持12种不同的数据库驱动,这意味着你可以使用相同的代码来连接和操作不同的数据库系统。这种数据库无关性大大提高了开发效率和代码的可维护性。

2. 面向对象接口

PDO提供了一套面向对象的接口,使得数据库操作更加直观和易于理解。你可以通过创建PDO实例来连接数据库,然后使用这个实例的方法来执行SQL语句。

3. 预处理语句

PDO支持预处理语句(prepared statements),这是一种可以防止SQL注入攻击的安全技术。预处理语句允许你将SQL代码与数据分离,从而减少数据库被恶意代码攻击的风险。

4. 异常处理

PDO使用异常来处理错误,而不是传统的错误报告机制。这意味着你可以使用try-catch块来捕获和处理数据库操作中可能出现的错误。

如何使用PDO

1. 安装和配置

PDO通常随PHP一起安装,但某些数据库驱动可能需要单独安装。在PHP配置文件(php.ini)中,你需要启用所需的PDO驱动。

2. 创建PDO实例

要连接到数据库,你需要创建一个PDO实例。这需要数据库类型、主机名、数据库名、用户名和密码。

try {$pdo = new PDO('mysql:host=localhost;dbname=mydatabase', 'username', 'password');
} catch (PDOException $e) {die("无法连接到数据库: " . $e->getMessage());
}

3. 执行SQL语句

使用PDO实例,你可以执行SQL语句来查询、插入、更新或删除数据库中的数据。

// 查询数据
$stmt = $pdo->query('SELECT * FROM users');
while ($row = $stmt->fetch(PDO::FETCH_ASSOC)) {echo $row['username'] . "\n";
}// 插入数据
$stmt = $pdo->prepare('INSERT INTO users (username, email) VALUES (:username, :email)');
$stmt->execute(['username' => 'newuser', 'email' => 'newuser@example.com']);

4. 使用预处理语句

预处理语句可以提高性能并防止SQL注入。

$stmt = $pdo->prepare('SELECT * FROM users WHERE username = :username');
$stmt->execute(['username' => 'admin']);
$row = $stmt->fetch(PDO::FETCH_ASSOC);

结论

PHP PDO是一个强大、灵活且安全的数据库操作工具。它提供了数据库无关性、面向对象的接口、预处理语句和异常处理等特性,使得数据库操作更加简便和安全。无论你是初学者还是有经验的开发者,都应该考虑在项目中使用PDO。

相关文章:

PHP PDO:安全、灵活的数据持久层解决方案

PHP PDO:安全、灵活的数据持久层解决方案 PHP PDO(PHP Data Objects)是一个轻量级的、具有兼容接口的数据持久层抽象层。它提供了一个统一的API来访问多种数据库系统,如MySQL、PostgreSQL、SQLite、Oracle等。PDO扩展在PHP 5.1.0…...

九、Linux实战案例:项目部署全流程深度解析

Linux实战案例:项目部署全流程深度解析 在当今信息技术领域,Linux服务器凭借其卓越的稳定性、安全性以及强大的性能表现,被广泛应用于各类项目部署场景之中。本文将全面深入地介绍如何将一个项目成功部署至Linux服务器的完整流程&#xff0c…...

GIS常见前端开发框架

#1024程序员节|征文# 伴随GIS的发展,陆续出现了众多开源地图框架,这些地图框架与众多行业应用融合,极大地拓展了GIS的生命力,这里介绍几个常见的GIS前端开发框架,排名不分先后。 1.Leaflet https://leafl…...

Java | Leetcode Java题解之第506题相对名次

题目: 题解: class Solution {public String[] findRelativeRanks(int[] score) {int n score.length;String[] desc {"Gold Medal", "Silver Medal", "Bronze Medal"};int[][] arr new int[n][2];for (int i 0; i &…...

数据结构 - 堆

今天我们将学习新的数据结构-堆。 01定义 堆是一种特殊的二叉树,并且满足以下两个特性: (1)堆是一棵完全二叉树; (2)堆中任意一个节点元素值都小于等于(或大于等于)左…...

html----图片按钮,商品展示

源码 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>图标</title><style>.box{width:…...

YOLOv11改进策略【卷积层】| ECCV-2024 小波卷积WTConv 增大感受野,降低参数量计算量,独家创新助力涨点

一、本文介绍 本文记录的是利用小波卷积WTConv模块优化YOLOv11的目标检测网络模型。WTConv的目的是在不出现过参数化的情况下有效地增加卷积的感受野,从而解决了CNN在感受野扩展中的参数膨胀问题。本文将其加入到深度可分离卷积中,有效降低模型参数量和计算量,并二次创新C3…...

redis高级篇之redis源码分析List类型quicklist底层演变 答疑159节

(1)ziplist压缩配置:list-compress-depth 0 表示一个quicklist两端不被压缩的节点个数。这里的节点是指quicklist双向链表的节点&#xff0c;而不是指ziplist里面的数据项个数参数list-compress-depth的取值含义如下: 0:是个特殊值&#xff0c;表示都不压缩。这是Redis的默认值…...

Elasticsearch 与 Lucene 的区别和联系

Elasticsearch 与 Lucene 的区别和联系 Elasticsearch 与 Lucene 的区别和联系一、知识背景Elasticsearch 简介Lucene 简介 二、Elasticsearch 和 Lucene 的区别适用场景性能优势和劣势架构设计的异同点 三、Elasticsearch和Lucene的联系四、Elasticsearch和Lucene的应用案例及…...

OpenCV视觉分析之运动分析(5)背景减除类BackgroundSubtractorMOG2的使用

操作系统&#xff1a;ubuntu22.04 OpenCV版本&#xff1a;OpenCV4.9 IDE:Visual Studio Code 编程语言&#xff1a;C11 算法描述 基于高斯混合模型的背景/前景分割算法。 该类实现了在文献[320]和[319]中描述的高斯混合模型背景减除。 cv::BackgroundSubtractorMOG2 类是 O…...

【SAP Hana】X-DOC:数据仓库ETL如何抽取SAP中的CDS视图数据

【SAP Hana】X-DOC&#xff1a;数据仓库ETL如何抽取SAP中的CDS视图数据 1、无参CDS对应数据库视图2、有参CDS对应数据库表函数3、封装有参CDS为无参CDS&#xff0c;从而对应数据库视图 1、无参CDS对应数据库视图 select * from ZFCML_REP_V where mandt 300;2、有参CDS对应数…...

WPF的UpdateSourceTrigger属性

在WPF中&#xff0c;UpdateSourceTrigger属性用于控制数据绑定中何时将绑定目标&#xff08;通常是UI元素&#xff09;的值更新回绑定源&#xff08;通常是数据对象&#xff09;。这个属性有以下几个值&#xff1a; Default&#xff1a;这是默认值&#xff0c;对于不同的绑定目…...

2024-09-25 环境变量,进程地址空间

一、认识常见的环境变量 1. echo $HOME 输出当前用户对应的家目录 当用户登录系统时&#xff0c;流程如下&#xff1a; &#xff08;1&#xff09;用户登录系统后&#xff0c;系统启动Shell程序。 &#xff08;2&#xff09;启动bash shell&#xff0c;准备接收用户指令。 &a…...

中国移动机器人将投入养老场景;华为与APUS共筑AI医疗多场景应用

AgeTech News 一周行业大事件 华为与APUS合作&#xff0c;共筑AI医疗多场景应用 中国移动展出人形机器人&#xff0c;预计投入养老等场景 作为科技与奥富能签约&#xff0c;共拓智能适老化改造领域 天与养老与香港科技园&#xff0c;共探智慧养老新模式 中山大学合作中国…...

青少年编程能力等级测评CPA C++ 四级试卷(1)

青少年编程能力等级测评CPA C 四级试卷&#xff08;1&#xff09; 一、单项选择题&#xff08;共15题&#xff0c;每题3分&#xff0c;共45分&#xff09; CP4_1_1.在面向对象程序设计中&#xff0c;与数据构成一个相互依存的整体的是&#xff08; &#xff09;。 A. 对数据…...

树上任意两点的距离

题目描述 给出 n 个点的一棵树&#xff0c;多次询问两点之间的最短距离。 注意&#xff1a;边是双向的。 输入描述 第一行为两个整数 n 和 m。n 表示点数&#xff0c;m 表示询问次数&#xff1b; 下来 n−1 行&#xff0c;每行三个整数 x,y,k&#xff0c;表示点 x 和点 y 之间…...

【 thinkphp8 】00008 thinkphp8数据查询,常用table,name方法,进行数据查询汇总

前言&#xff1a;哈喽&#xff0c;大家好&#xff0c;今天给大家分享一篇文章&#xff01;并提供具体代码帮助大家深入理解&#xff0c;彻底掌握&#xff01;创作不易&#xff0c;如果能帮助到大家或者给大家一些灵感和启发&#xff0c;欢迎收藏关注哦 &#x1f495; 目录 【 t…...

Git的命令合集

关于Git的一些命令合集&#xff0c;会慢慢更新&#xff01; 20241024程序员节开始写的&#xff0c;记录一下~~ git查看log、查看详细提交记录 会显示之前的提交记录 , 排序由近及远 git log log按q退出 git回退到某个commit命令&#xff1a; 退到/进到指定commit的sha码&…...

博客搭建之路:hexo搜索引擎收录

文章目录 hexo搜索引擎收录以百度为例 hexo搜索引擎收录 hexo版本5.0.2 npm版本6.14.7 next版本7.8.0 写博客的目的肯定不是就只有自己能看到&#xff0c;想让更多的人看到就需要可以让搜索引擎来收录对应的文章。hexo支持生成站点地图sitemap 在hexo下的_config.yml中配置站点…...

创建Windows系统还原点

系统保护...

AI-调查研究-01-正念冥想有用吗?对健康的影响及科学指南

点一下关注吧&#xff01;&#xff01;&#xff01;非常感谢&#xff01;&#xff01;持续更新&#xff01;&#xff01;&#xff01; &#x1f680; AI篇持续更新中&#xff01;&#xff08;长期更新&#xff09; 目前2025年06月05日更新到&#xff1a; AI炼丹日志-28 - Aud…...

微信小程序之bind和catch

这两个呢&#xff0c;都是绑定事件用的&#xff0c;具体使用有些小区别。 官方文档&#xff1a; 事件冒泡处理不同 bind&#xff1a;绑定的事件会向上冒泡&#xff0c;即触发当前组件的事件后&#xff0c;还会继续触发父组件的相同事件。例如&#xff0c;有一个子视图绑定了b…...

23-Oracle 23 ai 区块链表(Blockchain Table)

小伙伴有没有在金融强合规的领域中遇见&#xff0c;必须要保持数据不可变&#xff0c;管理员都无法修改和留痕的要求。比如医疗的电子病历中&#xff0c;影像检查检验结果不可篡改行的&#xff0c;药品追溯过程中数据只可插入无法删除的特性需求&#xff1b;登录日志、修改日志…...

ESP32 I2S音频总线学习笔记(四): INMP441采集音频并实时播放

简介 前面两期文章我们介绍了I2S的读取和写入&#xff0c;一个是通过INMP441麦克风模块采集音频&#xff0c;一个是通过PCM5102A模块播放音频&#xff0c;那如果我们将两者结合起来&#xff0c;将麦克风采集到的音频通过PCM5102A播放&#xff0c;是不是就可以做一个扩音器了呢…...

【LeetCode】3309. 连接二进制表示可形成的最大数值(递归|回溯|位运算)

LeetCode 3309. 连接二进制表示可形成的最大数值&#xff08;中等&#xff09; 题目描述解题思路Java代码 题目描述 题目链接&#xff1a;LeetCode 3309. 连接二进制表示可形成的最大数值&#xff08;中等&#xff09; 给你一个长度为 3 的整数数组 nums。 现以某种顺序 连接…...

HybridVLA——让单一LLM同时具备扩散和自回归动作预测能力:训练时既扩散也回归,但推理时则扩散

前言 如上一篇文章《dexcap升级版之DexWild》中的前言部分所说&#xff0c;在叠衣服的过程中&#xff0c;我会带着团队对比各种模型、方法、策略&#xff0c;毕竟针对各个场景始终寻找更优的解决方案&#xff0c;是我个人和我司「七月在线」的职责之一 且个人认为&#xff0c…...

LLaMA-Factory 微调 Qwen2-VL 进行人脸情感识别(二)

在上一篇文章中,我们详细介绍了如何使用LLaMA-Factory框架对Qwen2-VL大模型进行微调,以实现人脸情感识别的功能。本篇文章将聚焦于微调完成后,如何调用这个模型进行人脸情感识别的具体代码实现,包括详细的步骤和注释。 模型调用步骤 环境准备:确保安装了必要的Python库。…...

CMS内容管理系统的设计与实现:多站点模式的实现

在一套内容管理系统中&#xff0c;其实有很多站点&#xff0c;比如企业门户网站&#xff0c;产品手册&#xff0c;知识帮助手册等&#xff0c;因此会需要多个站点&#xff0c;甚至PC、mobile、ipad各有一个站点。 每个站点关联的有站点所在目录及所属的域名。 一、站点表设计…...

当下AI智能硬件方案浅谈

背景&#xff1a; 现在大模型出来以后&#xff0c;打破了常规的机械式的对话&#xff0c;人机对话变得更聪明一点。 对话用到的技术主要是实时音视频&#xff0c;简称为RTC。下游硬件厂商一般都不会去自己开发音视频技术&#xff0c;开发自己的大模型。商用方案多见为字节、百…...

aurora与pcie的数据高速传输

设备&#xff1a;zynq7100&#xff1b; 开发环境&#xff1a;window&#xff1b; vivado版本&#xff1a;2021.1&#xff1b; 引言 之前在前面两章已经介绍了aurora读写DDR,xdma读写ddr实验。这次我们做一个大工程&#xff0c;pc通过pcie传输给fpga&#xff0c;fpga再通过aur…...