当前位置: 首页 > news >正文

动态规划<一>初识动态规划

目录

认识动态规划

LeetCodeOJ练习 

斐波那契数列模型

认识动态规划

1.动态规划是一种用于解决优化问题的算法策略。
2.它的核心原理是把一个复杂的问题分解为一系列相互关联的子问题。通过先求解子问题,并且记录这些子问题的解(通常用一个表格之类的存储结构),避免重复计算,然后基于这些子问题的解来构建原问题的解

3.解题步骤 

这里通过一道题进行说明一些概念

传送门:LeetCode<1137> 第 N 个泰波那契数

1.创建一个dp表(一般用数组)

2.确定状态表示

   状态表示的话,简单理解就是dp表里面的值所代表的含义

   对于此题的话,就是dp[i]表示的含义为第i个泰波那契数

   该如何确定状态表示:

  (1)可以根据题目要求,对于本题就是

  (2)经验和题目要求

  (3)分析问题的过程中,发现重复子问题

3.确定状态转移方程

   简单说就是求出dp[i]等于什么 对于本题就是dp[i]=dp[i-1]+dp[i-2]+dp[i-3]

4.初始化

确定初始状态的值,保证填表时不发生越界

对于此题就是dp[0],dp[1],dp[2]必须初始化,若通过状态转移方程计算的话,就会发生越界

5.填表顺序

确定是从左向右,还是从右向左的顺序填表,确保填写当前状态的时候,所需要的状态已经计算过了,对于本题就是从左向右的顺序

6.返回结果

根据题目要求和具体的状态表示,对于此题就是返回dp[n]

7.空间优化(不是必须)

因为创建dp表,导致空间复杂度为O(N),在这里我们可以用滚动数组进行优化

通过几个变量来降低空间复杂度

 当我们依次往后求dp[i]时,前面的一些状态可以舍去,仅仅用中间若干个有效的状态,比如求dp[5]只需要知道dp[4],dp[3],dp[2]就可以了,像这样的情况就可以使用滚动数组来优化

本题具体代码

没有做优化的版本

int tribonacci(int n) {//1.创建dp表//2.初始化//3.填表//4.返回值//处理边界情况if(n==0) return 0;if(n==1 || n==2) return 1;vector<int> dp(n+1);dp[0]=0,dp[1]=dp[2]=1;for(int i=3;i<=n;++i)dp[i]=dp[i-1]+dp[i-2]+dp[i-3];return dp[n];}

优化的版本 

int tribonacci(int n) {//1.创建dp表//2.初始化//3.填表//4.返回值//处理边界情况if(n==0) return 0;if(n==1 || n==2) return 1;int a=0,b=1,c=1,d=0;for(int i=3;i<=n;++i){d=a+b+c;a=b,b=c,c=d;//滚动操作}return d;}

LeetCodeOJ练习 

斐波那契数列模型

1.<面试题08.01> 三步问题

画图分析:

使用动态规划解决此题的步骤

1.创建dp表

2.确定状态表示

对于一般题都是集合经验和题目要求来确定

常见的经验有:以i位置为结尾xxx;以i位置为开始xxx     对于本题dp[i]表示到i位置的走法数

3.确定状态转移方程

确定方法一般为:以当前i位置状态最近的一步来划分问题,将划分的每个子问题用dp[x]表示

4.初始化,防止出现越界 对dp[1],dp[2],dp[3]进行初始化

5.填表顺序  从左往右

6.返回结果   dp[n]

具体代码:注意细节问题要将相加的结果模1e9+7,防止越界

int waysToStep(int n) {//1.创建dp表//2.初始化//3.填表//4.返回值const int MOD=1e9+7;//处理边界防止越界if(n==1 || n==2) return n;if(n==3) return 4;vector<int> dp(n+1);dp[1]=1,dp[2]=2,dp[3]=4;for(int i=4;i<=n;++i)dp[i]=((dp[i-1]+dp[i-2])%MOD+dp[i-3])%MOD;return dp[n];}

 2.LeetCode<746> 使用最小花费爬楼梯

画图分析:

使用动态规划解决此题的步骤:

1.创建dp表

2.确定状态表示

根据经验+题目要求,此处的dp[i]可以表示到达i位置时的最下花费

或者dp[i]表示从i位置开始到顶楼的最小花费

3.确定状态转移方程 

   (1)dp[i]可以表示到达i位置时的最下花费

对应代码

 int minCostClimbingStairs(vector<int>& cost) {//1.创建dp表//2.初始化//3.填表//4.返回结果int n=cost.size();vector<int> dp(n+1);dp[0]=dp[1]=0;for(int i=2;i<=n;++i){dp[i]=min(dp[i-1]+cost[i-1],dp[i-2]+cost[i-2]);}return dp[n];}

(2) dp[i]表示从i位置开始到顶楼的最小花费

对应代码:

 int minCostClimbingStairs(vector<int>& cost) {int n=cost.size();vector<int> dp(n);dp[n-1]=cost[n-1],dp[n-2]=cost[n-2];for(int i=n-3;i>=0;--i)dp[i]=cost[i]+min(dp[i+1],dp[i+2]);return min(dp[0],dp[1]);}

3.LeetCode<91> 解码方法

 使用动态规划解决此题的步骤

1.创建dp表

2.确定状态表示

方法依旧是根据经验+结合题意

dp[i]表示以i位置为结尾,解析方法的总数(从开始解析到i位置的方法总数)

3.确定状态转移方程

根据最近的一步,划分问题

 具体代码为

int numDecodings(string s) {//1.创建dp表//2.初始化//3.填写dp表//4.返回结果int n = s.size();vector<int> dp(n); // 创建⼀个 dp表// 初始化前两个位置dp[0] = s[0] != '0';if(n == 1) return dp[0]; // 处理边界情况if(s[1]!='0') dp[1] += dp[0];int t = (s[0] - '0') * 10 + s[1] - '0';if(t >= 10 && t <= 26) dp[1] += 1;for(int i = 2; i < n; i++){// 如果单独编码if(s[i]!='0') dp[i] += dp[i - 1];// 如果和前⾯的⼀个数联合起来编码int t = (s[i - 1] - '0') * 10 + s[i] - '0';if(t >= 10 && t <= 26) dp[i] += dp[i - 2];}// 返回结果return dp[n - 1];}

对于上述代码我们会发现初始化操作和填写表操作几乎一致,在这里我们就可以对边界问题和初始化问题做优化的

优化的方法为添加虚拟头结点,使新dp表和旧dp表产生如下的映射关系

这里有两个需要注意的问题

(1)虚拟节点里面的值,要确保后面的填表也是正确的

(2)新旧dp表下标间的映射关系

对于(1)的话,新的dp表中,对于计算dp[2]=dp[1]+dp[0],dp[1]是直接映射下来的不用管,重点是dp[0]中的值,当球dp[2]要用到dp[0]时,若原字符串中的第一个和第二个位置字符拼起来能解码成功时,说明s[0]也是可以单独解码成功的,若dp[0]=0的话,就会缺失这个能单独解码的情况,所以dp[0]=1

优化后的代码

 int numDecodings(string s) {//1.创建dp表//2.初始化//3.填写dp表//4.返回结果int n = s.size();vector<int> dp(n+1); // 创建⼀个 dp表// 初始化前两个位置dp[0] = 1;dp[1]=s[1-1]!='0';for(int i = 2; i <= n; i++){// 如果单独编码if(s[i-1]!='0') dp[i] += dp[i - 1];// 如果和前⾯的⼀个数联合起来编码int t = (s[i - 2] - '0') * 10 + s[i-1] - '0';if(t >= 10 && t <= 26) dp[i] += dp[i - 2];}// 返回结果return dp[n];}

相关文章:

动态规划<一>初识动态规划

目录 认识动态规划 LeetCodeOJ练习 斐波那契数列模型 认识动态规划 1.动态规划是一种用于解决优化问题的算法策略。 2.它的核心原理是把一个复杂的问题分解为一系列相互关联的子问题。通过先求解子问题&#xff0c;并且记录这些子问题的解&#xff08;通常用一个表格之类的…...

【AIGC】ChatGPT提示词Prompt精确控制指南:Scott Guthrie的建议详解与普通用户实践解析

博客主页&#xff1a; [小ᶻZ࿆] 本文专栏: AIGC | ChatGPT 文章目录 &#x1f4af;前言&#x1f4af;斯科特古斯里&#xff08;Scott Guthrie&#xff09;的建议解读人机交互设计的重要性减轻用户认知负担提高Prompt的易用性结论 &#x1f4af;普通用户视角的分析普通用户…...

2024年10月24日随笔

1024程序员节啊&#xff0c;现在已经是晚上的十点半了&#xff0c;我还在实验室里没走&#xff0c;刚把力扣的每日一题写完&#xff0c;好忙啊&#xff0c;好忙啊&#xff0c;好忙啊&#xff0c;为什么都大三了我还不能做自己的事情&#xff0c;今天老师开会说要给互联网加大赛…...

怎么做系统性能优化

对于软件或系统的性能优化&#xff0c;可以采取多种措施来提高效率和响应速度。这里为您列举一些常见的方法&#xff1a; 1. 代码优化&#xff1a;检查并优化算法复杂度&#xff0c;减少不必要的计算。使用更高效的数据结构和算法。 2. 数据库优化&#xff1a; •索引优化&…...

负载均衡:四层与七层

负载均衡建立在现在网络基础之上&#xff0c;提供一种廉价透明有效的方式扩展网络设备和服务器带宽、增加吞吐量、加强网络数据处理能力、提高网络的灵活性和可用性。负载均衡可分为七层负载与四层负载。 四层负载&#xff08;目标地址与端口交换&#xff09; 主要通过报文中…...

【Ubuntu】服务器系统重装SSHxrdpcuda

本文作者&#xff1a; slience_me Ubuntu系统重装操作合集 文章目录 Ubuntu系统重装操作合集1.1 系统安装&#xff1a;1.2 安装openssh-server更新系统包安装OpenSSH服务器检查SSH服务的状态配置防火墙以允许SSH测试SSH连接配置SSH&#xff08;可选&#xff09; 1.3 安装远程连…...

ChatGPT的模型训练入门级使用教程

ChatGPT 是由 OpenAI 开发的一种自然语言生成模型&#xff0c;基于 Transformer 架构的深度学习技术&#xff0c;能够流畅地进行对话并生成有意义的文本内容。它被广泛应用于聊天机器人、客户服务、内容创作、编程助手等多个领域。很多人对如何训练一个类似 ChatGPT 的语言模型…...

【OS】2.1.2 进程的状态与转换_进程的组织

✨ Blog’s 主页: 白乐天_ξ( ✿&#xff1e;◡❛) &#x1f308; 个人Motto&#xff1a;他强任他强&#xff0c;清风拂山冈&#xff01; &#x1f525; 所属专栏&#xff1a;C深入学习笔记 &#x1f4ab; 欢迎来到我的学习笔记&#xff01; 一、进程的状态 1.1.创建态 ……的…...

和为 n 的完全平方数的最少数量

给你一个整数 n &#xff0c;返回 和为 n 的完全平方数的最少数量 。 完全平方数 是一个整数&#xff0c;其值等于另一个整数的平方&#xff1b;换句话说&#xff0c;其值等于一个整数自乘的积。例如&#xff0c;1、4、9 和 16 都是完全平方数&#xff0c;而 3 和 11 不是。 示…...

Hallo2 长视频和高分辨率的音频驱动的肖像图像动画 (数字人技术)

HALLO2: LONG-DURATION AND HIGH-RESOLUTION AUDIO-DRIVEN PORTRAIT IMAGE ANIMATION 论文&#xff1a;https://arxiv.org/abs/2410.07718 代码&#xff1a;https://github.com/fudan-generative-vision/hallo2 模型&#xff1a;https://huggingface.co/fudan-generative-ai/h…...

如何在Debian 8上使用Let‘s Encrypt保护Apache

前些天发现了一个巨牛的人工智能学习网站&#xff0c;通俗易懂&#xff0c;风趣幽默&#xff0c;忍不住分享一下给大家。点击跳转到网站。 简介 本教程将向您展示如何在运行 Apache 作为 Web 服务器的 Debian 8 服务器上设置来自 Let’s Encrypt 的 TLS/SSL 证书。我们还将介…...

百科知识|选购指南

百科知识||选购指南 百科知识选购指南茶叶分类茶叶的味道来源茶叶制作步骤名茶其他一些茶叶的知识 百科知识 选购指南 茶叶 分类 茶叶种类: 六大茶类完美分析介绍&#xff01;茶友推荐收藏 (aboxtik.com) 1.绿茶&#xff08;发酵率0%&#xff09; 2.白茶&#xff08;发酵率…...

Go 语言基础教程:4.常量的使用

在这篇教程中&#xff0c;我们将通过一个简单的 Go 语言程序来学习常量的声明和使用。以下是我们要分析的代码&#xff1a; package mainimport ("fmt""math" )const s string "constant"func main() {fmt.Println(s)const n 500000000const …...

centos服务器重启后,jar包自启动

第一种方法&#xff1a; systemctl服务自启动 在/usr/lib/systemd/system目录下&#xff0c;创建service&#xff1a;start_jar.servie [Unit] DescriptionYour Java Application as a Service Afternetwork.target[Service] Userroot Typesimple ExecStart/usr/bin/java -j…...

华为云实战杂记

配置nginx服务器 首先我们拿到一台服务器时&#xff0c;并不知道系统是否存在Nginx我们可以在Linux命令行执行如下命令查看 find / -name nginx* find / -name nginx* 查找所有名字以nginx开头的文件或者目录&#xff0c;我们看看系统里面都有哪些文件先&#xff0c;这样可以快…...

Lesson10---list

Lesson10—list 第10章 c的list的使用和实现 文章目录 Lesson10---list前言一、list的初始化二、list的遍历1.迭代器2.范围for 三、list常用的内置函数1.sort&#xff08;慎用&#xff09;2.unique3.reverse4.merge5.splice 四、模拟实现1.基本框架2.构造函数3.push_back4. 遍…...

ASP.NET Core 8.0 中使用 Hangfire 调度 API

在这篇博文中&#xff0c;我们将引导您完成将 Hangfire 集成到 ASP.NET Core NET Core 项目中以安排 API 每天运行的步骤。Hangfire 是一个功能强大的库&#xff0c;可简化 .NET 应用程序中的后台作业处理&#xff0c;使其成为调度任务的绝佳选择。继续阅读以了解如何设置 Hang…...

查看linux的版本

在 Linux 系统中&#xff0c;有多种方法可以查看当前系统的版本信息。以下是一些常用的方法&#xff1a; 1. 使用 uname 命令 uname 命令可以显示系统的内核版本和其他相关信息。 uname -a这个命令会输出类似如下的信息&#xff1a; Linux hostname 5.4.0-88-generic #99-U…...

Mysql补充

单例 双重检查锁 class Singleton {private static volatile Singleton instance ;private Singleton() {}public static Singleton getInstance(){if(instance null) {synchronized (Singleto.class) {if(instance null){instance new Singleton() ;}} return instance;} …...

com.baomidou.mybatisplus.extension.service.IService用法详解及使用例子

IService 是 MyBatis-Plus 中的一个接口&#xff0c;提供了通用的 CRUD 操作&#xff0c;简化了数据库操作的代码。下面是 IService 的用法详解及示例代码。 1. 引入依赖 确保在你的 pom.xml 中添加了 MyBatis-Plus 的依赖&#xff1a; <dependency><groupId>co…...

利用ngx_stream_return_module构建简易 TCP/UDP 响应网关

一、模块概述 ngx_stream_return_module 提供了一个极简的指令&#xff1a; return <value>;在收到客户端连接后&#xff0c;立即将 <value> 写回并关闭连接。<value> 支持内嵌文本和内置变量&#xff08;如 $time_iso8601、$remote_addr 等&#xff09;&a…...

【HarmonyOS 5 开发速记】如何获取用户信息(头像/昵称/手机号)

1.获取 authorizationCode&#xff1a; 2.利用 authorizationCode 获取 accessToken&#xff1a;文档中心 3.获取手机&#xff1a;文档中心 4.获取昵称头像&#xff1a;文档中心 首先创建 request 若要获取手机号&#xff0c;scope必填 phone&#xff0c;permissions 必填 …...

《C++ 模板》

目录 函数模板 类模板 非类型模板参数 模板特化 函数模板特化 类模板的特化 模板&#xff0c;就像一个模具&#xff0c;里面可以将不同类型的材料做成一个形状&#xff0c;其分为函数模板和类模板。 函数模板 函数模板可以简化函数重载的代码。格式&#xff1a;templa…...

Kafka入门-生产者

生产者 生产者发送流程&#xff1a; 延迟时间为0ms时&#xff0c;也就意味着每当有数据就会直接发送 异步发送API 异步发送和同步发送的不同在于&#xff1a;异步发送不需要等待结果&#xff0c;同步发送必须等待结果才能进行下一步发送。 普通异步发送 首先导入所需的k…...

day36-多路IO复用

一、基本概念 &#xff08;服务器多客户端模型&#xff09; 定义&#xff1a;单线程或单进程同时监测若干个文件描述符是否可以执行IO操作的能力 作用&#xff1a;应用程序通常需要处理来自多条事件流中的事件&#xff0c;比如我现在用的电脑&#xff0c;需要同时处理键盘鼠标…...

解析奥地利 XARION激光超声检测系统:无膜光学麦克风 + 无耦合剂的技术协同优势及多元应用

在工业制造领域&#xff0c;无损检测&#xff08;NDT)的精度与效率直接影响产品质量与生产安全。奥地利 XARION开发的激光超声精密检测系统&#xff0c;以非接触式光学麦克风技术为核心&#xff0c;打破传统检测瓶颈&#xff0c;为半导体、航空航天、汽车制造等行业提供了高灵敏…...

负载均衡器》》LVS、Nginx、HAproxy 区别

虚拟主机 先4&#xff0c;后7...

工厂方法模式和抽象工厂方法模式的battle

1.案例直接上手 在这个案例里面&#xff0c;我们会实现这个普通的工厂方法&#xff0c;并且对比这个普通工厂方法和我们直接创建对象的差别在哪里&#xff0c;为什么需要一个工厂&#xff1a; 下面的这个是我们的这个案例里面涉及到的接口和对应的实现类&#xff1a; 两个发…...

21-Oracle 23 ai-Automatic SQL Plan Management(SPM)

小伙伴们&#xff0c;有没有迁移数据库完毕后或是突然某一天在同一个实例上同样的SQL&#xff0c; 性能不一样了、业务反馈卡顿、业务超时等各种匪夷所思的现状。 于是SPM定位开始&#xff0c;OCM考试中SPM必考。 其他的AWR、ASH、SQLHC、SQLT、SQL profile等换作下一个话题…...

RFID推动新能源汽车零部件生产系统管理应用案例

RFID推动新能源汽车零部件生产系统管理应用案例 一、项目背景 新能源汽车零部件场景 在新能源汽车零部件生产领域&#xff0c;电子冷却水泵等关键部件的装配溯源需求日益增长。传统 RFID 溯源方案采用 “网关 RFID 读写头” 模式&#xff0c;存在单点位单独头溯源、网关布线…...