当前位置: 首页 > news >正文

多特征变量序列预测(四) Transformer-BiLSTM风速预测模型

往期精彩内容:

时序预测:LSTM、ARIMA、Holt-Winters、SARIMA模型的分析与比较

全是干货 | 数据集、学习资料、建模资源分享!

EMD、EEMD、FEEMD、CEEMD、CEEMDAN的区别、原理和Python实现(一)EMD-CSDN博客

EMD、EEMD、FEEMD、CEEMD、CEEMDAN的区别、原理和Python实现(二)EEMD

EMD、EEMD、FEEMD、CEEMD、CEEMDAN的区别、原理和Python实现(三)FEEMD-CSDN博客

EMD、EEMD、FEEMD、CEEMD、CEEMDAN的区别、原理和Python实现(四)CEEMD-CSDN博客

EMD变体分解效果最好算法——CEEMDAN(五)-CSDN博客

拒绝信息泄露!VMD滚动分解 + Informer-BiLSTM并行预测模型-CSDN博客

风速预测(一)数据集介绍和预处理_风速数据在哪里下载-CSDN博客

风速预测(二)基于Pytorch的EMD-LSTM模型-CSDN博客

风速预测(三)EMD-LSTM-Attention模型-CSDN博客

风速预测(四)基于Pytorch的EMD-Transformer模型-CSDN博客

风速预测(五)基于Pytorch的EMD-CNN-LSTM模型-CSDN博客

风速预测(六)基于Pytorch的EMD-CNN-GRU并行模型-CSDN博客

单步预测-风速预测模型代码全家桶-CSDN博客

CEEMDAN +组合预测模型(BiLSTM-Attention + ARIMA)-CSDN博客

CEEMDAN +组合预测模型(Transformer - BiLSTM + ARIMA)-CSDN博客

CEEMDAN +组合预测模型(CNN-LSTM + ARIMA)-CSDN博客

CEEMDAN +组合预测模型(CNN-Transformer + ARIMA)-CSDN博客

多特征变量序列预测(一)——CNN-LSTM风速预测模型-CSDN博客

多特征变量序列预测(二)——CNN-LSTM-Attention风速预测模型-CSDN博客

多特征变量序列预测(三)——CNN-Transformer风速预测模型-CSDN博客

前言

本文基于前期介绍的风速数据(文末附数据集),介绍一种多特征变量序列预测模型Transformer + BiLSTM,以提高时间序列数据的预测性能。该数据集一共有天气、温度、湿度、气压、风速等九个变量,通过滑动窗口制作数据集,利用多变量来预测风速。

风速数据集的详细介绍可以参考下文:

风速预测(一)数据集介绍和预处理_垂直风速气象数据源-CSDN博客

1 多特征变量数据集制作与预处理

1.1 导入数据

1.2 数据集制作与预处理

先划分数据集,按照9:1划分训练集和测试集

制作数据集

2 基于Pytorch的Transformer + BiLSTM 预测模型

2.1 定义Transformer + BiLSTM预测模型

注意:输入风速数据形状为 [256, 7, 8], batch_size=256,7代表序列长度(滑动窗口取值),  维度8维代表挑选的8个变量。

2.2 设置参数,训练模型

50个epoch,MSE 为0.00084517,多变量特征Transformer-BiLSTM预测效果良好,适当调整模型参数,还可以进一步提高模型预测表现。

注意调整参数:

  • 可以适当增加Transformer层数和隐藏层的维度,微调学习率;

  • 调整BiLSTM层数和维度数,增加更多的 epoch (注意防止过拟合)

  • 可以改变滑动窗口长度(设置合适的窗口长度)

3 模型评估与可视化

3.1 结果可视化

3.2 模型评估

4 代码、数据整理如下:

相关文章:

多特征变量序列预测(四) Transformer-BiLSTM风速预测模型

往期精彩内容: 时序预测:LSTM、ARIMA、Holt-Winters、SARIMA模型的分析与比较 全是干货 | 数据集、学习资料、建模资源分享! EMD、EEMD、FEEMD、CEEMD、CEEMDAN的区别、原理和Python实现(一)EMD-CSDN博客 EMD、EEM…...

【开源免费】基于SpringBoot+Vue.JS蜗牛兼职平台 (JAVA毕业设计)

本文项目编号 T 034 ,文末自助获取源码 \color{red}{T034,文末自助获取源码} T034,文末自助获取源码 目录 一、系统介绍1.1 平台架构1.2 管理后台1.3 用户网页端1.4 技术特点 二、演示录屏三、启动教程四、功能截图五、文案资料5.1 选题背景…...

Ajax笔记

介绍 Ajax是一种网页开发技术,全称是Asynchronous JavaScript and XML(异步JavaScript和XML)。作用如下: 数据交换:可以通过Ajax给服务器发送请求,并获取服务器响应的数据。即前端动态的发送Ajax到服务器端…...

软考:缓存分片和一致性哈希

缓存分片技术是一种将数据分散存储在多个节点上的方法,它在分布式缓存系统中尤为重要。这项技术的核心目的是提高系统的性能和可扩展性,同时确保数据的高可用性。以下是缓存分片技术的一些关键点: 数据分片:缓存分片涉及将数据分成…...

3109 体验积分值

经验值:1200 时间限制:1000毫秒 内存限制:128MB 合肥市第34届信息学竞赛(2017年) 不许抄袭,一旦发现,直接清空经验! 题目描述 Description 卡卡西和小朋友们做完了烧脑的数字游…...

初识jsp

学习本章节前建议先安装Tomcat web服务器:tomcat下载安装及配置教程_tomcat安装-CSDN博客 1、概念 我的第一个JSP程序: 在WEB-INF目录之外创建一个index.jsp文件,然后这个文件中没有任何内容。将上面的项目部署之后,启动服务器…...

Ansible 的脚本 --- playbooks剧本

playbooks 本身由以下各部分组成 (1)Tasks:任务,即通过 task 调用 ansible 的模板将多个操作组织在一个 playbook 中运行 (2)Vars:变量 (3)Templates:模板 &a…...

Windows 死机时 系统错误日志分析与故障排除

目录 前言正文 前言 对于服务器异常重启,推荐阅读:详细分析服务器自动重启原因(涉及Linux、Window) 以下主要做一个总结梳理 正文 查看系统事件日志: 可以查看系统事件日志,找出可能导致系统崩溃的错误…...

基于pytorch搭建CNN

先上代码 import torch import torch.nn as nn import torch.optim as optim import torch.nn.functional as F from torchvision import datasets, transforms import matplotlib.pyplot as plt import numpy as np import pandas as pd import matplotlibmatplotlib.use(tkA…...

C#实现与Windows服务的交互与控制

在C#中,与Windows服务进行交互和控制通常涉及以下几个步骤: 创建Windows服务:首先,需要创建一个Windows服务项目。可以使用Visual Studio中的“Windows 服务 (.NET Framework)”项目模板来创建Windows服务。 配置服务控制事件&am…...

Java和Ts构造函数的区别

java中子类在使用有参构造创建对象的时候不必要必须调用父类有参构造 而js则必须用super()调用父类的有参构造,即使用不到也必须传递 Java 中的处理方式 可选择性参数: 在 Java 中,当子类使用父类的有参构造方法创建对象时,可以只传递需要的参数。如果父…...

植物健康,Spring Boot来助力

3系统分析 3.1可行性分析 通过对本植物健康系统实行的目的初步调查和分析,提出可行性方案并对其一一进行论证。我们在这里主要从技术可行性、经济可行性、操作可行性等方面进行分析。 3.1.1技术可行性 本植物健康系统采用SSM框架,JAVA作为开发语言&#…...

百度文心一言接入流程-java版

百度文心一言接入流程-java版 一、准备工作二、API接口调用-java三、百度Prompt工程参考资料: 百度文心一言:https://yiyan.baidu.com/百度千帆大模型:https://qianfan.cloud.baidu.com/百度千帆大模型文档:https://cloud.baidu.com/doc/WENXINWORKSHOP/index.html千tokens…...

Java 11 新特性深度解析与应用实践

Java 作为一种广泛应用的编程语言,不断演进以满足开发者日益增长的需求和适应技术的发展趋势。Java 11 带来了一系列重要的新特性和改进,这些变化不仅提升了语言的性能和功能,还为开发者提供了更好的开发体验和工具。本文将深入探讨 Java 11 …...

druid 连接池监控报错 Sorry, you are not permitted to view this page.本地可以,发布正式出错

简介: druid 连接池监控报错 Sorry, you are not permitted to view this page. 使用Druid连接池的时候,遇到一个奇怪的问题,在本地(localhost)可以直接打开Druid连接池监控,在其他机器上打开会报错&#…...

[RN与H5] 加载线上H5通信失败问题记录(启动本地H5服务OK)

RT: nextjs项目 在本地启动H5服务, 本地开发都OK 发布到线上后, 效果全无, 经排查发现, 写了基本配置的js脚本在挂载时机上的差异导致 根本原因是...

electron 打包

安装及配置 安装electron包以及electron-builder打包工具 # 安装 electron cnpm install --save-dev electron # 安装打包工具 cnpm install electron-builder -D 参考的package.json文件 其中description和author为必填项目 {"name": "appfile",&qu…...

ChatGLM-6B和Prompt搭建专业领域知识问答机器人应用方案(含完整代码)

目录 ChatGLM-6B部署 领域知识数据准备 领域知识数据读取 知识相关性匹配 Prompt提示工程 领域知识问答 完整代码 本文基于ChatGLM-6B大模型和Pompt提示工程搭建医疗领域知识问答机器人为例。 ChatGLM-6B部署 首先需要部署好ChatGLM-6B,参考 ChatGLM-6B中英双…...

虚拟机配置静态IP地址(人狠话不多简单粗暴)

1.先找到以下位置: 2. 虚拟机中执行vi /etc/sysconfig/network-scripts/ifcfg-ens33 根据上图信息修改配置文件内容: 静态IP地址设置不超过255就行,我这里弄得100,没毛病。 3.修改并保存文件后,重启网络执行&#…...

Android token JJWT

在Android开发领域,JJWT(Java JWT,即Java Json Web Token)库是一个流行的工具,用于处理JSON Web Tokens(JWTs)。JWT是一种轻量级的、自包含的、基于JSON的用于双方之间安全传输信息的简洁的、UR…...

动态规划<一>初识动态规划

目录 认识动态规划 LeetCodeOJ练习 斐波那契数列模型 认识动态规划 1.动态规划是一种用于解决优化问题的算法策略。 2.它的核心原理是把一个复杂的问题分解为一系列相互关联的子问题。通过先求解子问题,并且记录这些子问题的解(通常用一个表格之类的…...

【AIGC】ChatGPT提示词Prompt精确控制指南:Scott Guthrie的建议详解与普通用户实践解析

博客主页: [小ᶻZ࿆] 本文专栏: AIGC | ChatGPT 文章目录 💯前言💯斯科特古斯里(Scott Guthrie)的建议解读人机交互设计的重要性减轻用户认知负担提高Prompt的易用性结论 💯普通用户视角的分析普通用户…...

2024年10月24日随笔

1024程序员节啊,现在已经是晚上的十点半了,我还在实验室里没走,刚把力扣的每日一题写完,好忙啊,好忙啊,好忙啊,为什么都大三了我还不能做自己的事情,今天老师开会说要给互联网加大赛…...

怎么做系统性能优化

对于软件或系统的性能优化,可以采取多种措施来提高效率和响应速度。这里为您列举一些常见的方法: 1. 代码优化:检查并优化算法复杂度,减少不必要的计算。使用更高效的数据结构和算法。 2. 数据库优化: •索引优化&…...

负载均衡:四层与七层

负载均衡建立在现在网络基础之上,提供一种廉价透明有效的方式扩展网络设备和服务器带宽、增加吞吐量、加强网络数据处理能力、提高网络的灵活性和可用性。负载均衡可分为七层负载与四层负载。 四层负载(目标地址与端口交换) 主要通过报文中…...

【Ubuntu】服务器系统重装SSHxrdpcuda

本文作者: slience_me Ubuntu系统重装操作合集 文章目录 Ubuntu系统重装操作合集1.1 系统安装:1.2 安装openssh-server更新系统包安装OpenSSH服务器检查SSH服务的状态配置防火墙以允许SSH测试SSH连接配置SSH(可选) 1.3 安装远程连…...

ChatGPT的模型训练入门级使用教程

ChatGPT 是由 OpenAI 开发的一种自然语言生成模型,基于 Transformer 架构的深度学习技术,能够流畅地进行对话并生成有意义的文本内容。它被广泛应用于聊天机器人、客户服务、内容创作、编程助手等多个领域。很多人对如何训练一个类似 ChatGPT 的语言模型…...

【OS】2.1.2 进程的状态与转换_进程的组织

✨ Blog’s 主页: 白乐天_ξ( ✿>◡❛) 🌈 个人Motto:他强任他强,清风拂山冈! 🔥 所属专栏:C深入学习笔记 💫 欢迎来到我的学习笔记! 一、进程的状态 1.1.创建态 ……的…...

和为 n 的完全平方数的最少数量

给你一个整数 n ,返回 和为 n 的完全平方数的最少数量 。 完全平方数 是一个整数,其值等于另一个整数的平方;换句话说,其值等于一个整数自乘的积。例如,1、4、9 和 16 都是完全平方数,而 3 和 11 不是。 示…...

Hallo2 长视频和高分辨率的音频驱动的肖像图像动画 (数字人技术)

HALLO2: LONG-DURATION AND HIGH-RESOLUTION AUDIO-DRIVEN PORTRAIT IMAGE ANIMATION 论文:https://arxiv.org/abs/2410.07718 代码:https://github.com/fudan-generative-vision/hallo2 模型:https://huggingface.co/fudan-generative-ai/h…...

济南效果图制作公司/seo关键词分析表

本文为芬兰奥卢大学(作者:Hung Dao)的学士论文,共31页。 本文的目的是研究深度学习在卷积神经网络图像分类中的应用。论文采用了基于TensorFlow框架的Python编程语言和Google协作硬件。模型是从网上现有的设计中选择出来的&#…...

海阳网站建设/海城seo网站排名优化推广

Android不同应用之间数据的共享有许多方式,但是我觉得还是使用sharedPreference比较简单和轻量级。如果程序B想要访问程序A的sharedPreference可以通过下面的语句来实现: try {AContext createPackageContext(A_PACKAGE_NAME,Context.CONTEXT_IGNORE_SEC…...

ps软件下载电脑版多少钱/seo策略

1、percona-toolkit简介percona-toolkit是一组高级命令行工具的集合,用来执行各种通过手工执行非常复杂和麻烦的mysql和系统任务,这些任务包括:l 检查master和slave数据的一致性l 有效地对记录进行归档l 查找重复的索引l 对服务器信息进行汇总…...

易语言如何做网站吗/教你如何快速建站

java jdk在Linux下安装与环境变量的配置 by:授客 QQ:1033553122 linux环境:CentOS-6.0-x86_64-bin-DVD1.iso [rootlocalhost software]# ls jdk-6u13-linux-i586.bin jdk-6u13-linux-i586.zip 步骤1.创建并java安装目录 [rootlocalhost software]# mkdi…...

wordpress用户名无效/郑州网站seo外包公司

企业交换机中,除了vlan这些最频繁的应用外,还有一些比较高级的特性,比如配置三层端口,聚合端口等。利用这些特性可以帮助我们在某些业务方面提供便利,提供效率。三层交换机具有路由功能,相应的也有三层端口…...

视频网站开发需要什么插件/常熟网络推广

1.HR已读不回问题分析以及如何解决_哔哩哔哩_bilibili1.HR已读不回问题分析以及如何解决是2023最新软件测试面试大全看完offer拿到手软的第1集视频,该合集共计21集,视频收藏或关注UP主,及时了解更多相关视频内容。https://www.bilibili.com/v…...