当前位置: 首页 > news >正文

【目标检测02】非极大值抑制 NMS

文章目录

    • 1. 前言
    • 2. 原理
    • 3. 代码实现

1. 前言

在检测图像中的目标时,一个目标可能会被预测出多个矩形框,而实际上我们只需要一个,如何消除冗余的边界框呢?一种方简单的方案是提升置信度的阈值,过滤掉低置信度的边界框。而另一种方案是使用非极大值抑制NMS。NMS的做法是,选出某个类别得分最高的预测框,然后看哪些预测框跟它的IoU大于阈值,就把这些预测框给丢弃掉。这里IoU的阈值是超参数,需要提前设置。

2. 原理

在二分类的场景下:

  • 根据置信度得分进行排序
  • 选择置信度最高的边界框添加到最终输出列表中,将其从边界框列表中删除
  • 计算剩余边界框与输出列表中的边界框的IoU (IoU原理)
  • 从边界框列表中删除IoU大于阈值的边界框,把小于阈值的边界框追加到输出列表中
  • 重复上述过程,直至边界框列表为空

假设模型输出了11个预测框boxes, 以及对应的置信度scores:

Step0 创建选中列表,keep_list = []

Step1 对置信度进行排序,得到降序排序后边界框的索引位置列表remain_list = [ 3, 5, 10, 2, 9, 0, 1,
6, 4, 7, 8]

Step2 选出boxes[3],此时keep_list为空,不需要计算IoU,直接将其放入keep_list,keep_list =
[3], remain_list=[5, 10, 2, 9, 0, 1, 6, 4, 7, 8]

Step3 选出boxes[5],此时keep_list中已经存在boxes[3],计算出IoU(boxes[3], boxes[5]) =
0.0,显然小于阈值,则keep_list=[3, 5], remain_list = [10, 2, 9, 0, 1, 6, 4, 7, 8]

Step4 选出boxes[10],此时keep_list=[3, 5],计算IoU(boxes[3],
boxes[10])=0.0268,IoU(boxes[5], boxes[10])=0.0268 =
0.24,都小于阈值,则keep_list = [3, 5, 10],remain_list=[2, 9, 0, 1, 6, 4, 7, 8]

Step5 选出boxes[2],此时keep_list = [3, 5, 10],计算IoU(boxes[3], boxes[2]) =
0.88,超过了阈值,直接将boxes[2]丢弃,keep_list=[3, 5, 10],remain_list=[9, 0, 1, 6, 4, 7, 8]

Step6 选出boxes[9],此时keep_list = [3, 5, 10],计算IoU(boxes[3], boxes[9]) =
0.0577,IoU(boxes[5], boxes[9]) = 0.205,IoU(boxes[10], boxes[9]) = 0.88,超过了阈值,将boxes[9]丢弃掉。keep_list=[3, 5, 10],remain_list=[0, 1, 6, 4, 7, 8]

Step7 重复上述Step6直到remain_list为空

最终得到keep_list=[3, 5, 10],也就是预测框3、5、10被最终挑选出来了

在多分类的场景下,其实现与二分类的实现原理相同,区别在于需要对每个类别都做非极大值抑制

3. 代码实现

(1)二分类场景下:

# 非极大值抑制
def nms(bboxes, scores, score_thresh, nms_thresh, pre_nms_topk, i=0, c=0):"""nms"""# 置信度排序,结果降序排列,返回对应的索引inds = np.argsort(scores)inds = inds[::-1]# 输出列表keep_inds = []while(len(inds) > 0):# 每次遍历,从边界框列表中拿出一个框,默认从第一个开始处理cur_ind = inds[0]cur_score = scores[cur_ind]if cur_score < score_thresh:breakkeep = Truefor ind in keep_inds:current_box = bboxes[cur_ind]remain_box = bboxes[ind]iou = box_iou_xyxy(current_box, remain_box)# 过滤大于IoU阈值的边界框if iou > nms_thresh:keep = Falsebreakif keep:keep_inds.append(cur_ind)# 从边界框列表中删除已经处理过的框,因为每次都是从第一个框开始处理,因此把0索引的框删掉inds = inds[1:]return np.array(keep_inds)

(2)多分类场景下:

def multiclass_nms(bboxes, scores, score_thresh=0.01, nms_thresh=0.45, pre_nms_topk=1000, pos_nms_topk=100):batch_size = bboxes.shape[0]class_num = scores.shape[1]rets = []for i in range(batch_size):bboxes_i = bboxes[i]scores_i = scores[i]ret = []#对每一个类别单独做非极大值抑制for c in range(class_num):scores_i_c = scores_i[c]keep_inds = nms(bboxes_i, scores_i_c, score_thresh, nms_thresh, pre_nms_topk, i=i, c=c)if len(keep_inds) < 1:continuekeep_bboxes = bboxes_i[keep_inds]keep_scores = scores_i_c[keep_inds]keep_results = np.zeros([keep_scores.shape[0], 6])keep_results[:, 0] = ckeep_results[:, 1] = keep_scores[:]keep_results[:, 2:6] = keep_bboxes[:, :]ret.append(keep_results)if len(ret) < 1:rets.append(ret)continueret_i = np.concatenate(ret, axis=0)scores_i = ret_i[:, 1]if len(scores_i) > pos_nms_topk:inds = np.argsort(scores_i)[::-1]inds = inds[:pos_nms_topk]ret_i = ret_i[inds]rets.append(ret_i)return rets

相关文章:

【目标检测02】非极大值抑制 NMS

文章目录 1. 前言2. 原理3. 代码实现 1. 前言 在检测图像中的目标时&#xff0c;一个目标可能会被预测出多个矩形框&#xff0c;而实际上我们只需要一个&#xff0c;如何消除冗余的边界框呢&#xff1f;一种方简单的方案是提升置信度的阈值&#xff0c;过滤掉低置信度的边界框…...

104协议调试工具

在学习104协议过程中&#xff0c;通过直接阅读协议的学习方式会略有枯燥&#xff0c;这里把常用的104调试、测试工具介绍给大家&#xff0c;以便快速的进行模拟通信来更好的了解、学习104协议。 通信协议分析及仿真软件是非常重要的测试工具&#xff0c;该软件支持 101,104,mo…...

日常记录:es TransportClient添加证书处理

背景 最近在搞es登录&#xff0c;不知道是不是低版本问题&#xff08;6.8.12&#xff09;&#xff0c;开启登录之后springboot连接es&#xff0c;es一直报Caused by: io.netty.handler.ssl.NotSslRecordException: not an SSL/TLS record: 45530000002c000000000000009108004d3…...

apply call bind 简介

Function.prototype.call(thisArg [, arg1, arg2, …]) call() 简述 call() 方法 调用一个函数, 其具有一个指定的 this 值和分别地提供的参数(参数的列表)。当第一个参数为 null、undefined 的时候&#xff0c; 默认 this 上下文指向window。 call() 简单实例 const name …...

数据结构 单调栈

应用情景 求当前元素 前面/后面&#xff0c;第一个比它 小/大 的元素的 值/下标/下标距离 优点 剔除重复寻路操作&#xff0c;将暴力 O(n^2) 优化到 O(n) 性质 从栈底开始&#xff0c;元素 单调递增/单调递减 单调性视具体情景而定 (找较大值还是较小值、找的方向) 思路…...

【NodeJS】NodeJS+mongoDB在线版开发简单RestfulAPI (七):MongoDB的设置

本项目旨在学习如何快速使用 nodejs 开发后端api&#xff0c;并为以后开展其他项目的开启提供简易的后端模版。&#xff08;非后端工程师&#xff09; 由于文档是代码写完之后&#xff0c;为了记录项目中需要注意的技术点&#xff0c;因此文档的叙述方式并非开发顺序&#xff0…...

基于flask和neo4j的医疗知识图谱展示问答系统

如果你仍在为毕业设计的选题发愁&#xff0c;或者想通过技术项目提升专业实力&#xff0c;这个基于Flask和Neo4j的医疗知识图谱展示与问答系统&#xff0c;绝对是个不错的选择&#xff01; 项目亮点大揭秘&#xff1a; 知识图谱与问答结合&#xff1a;我们采用了医疗场景下的知…...

Python——脚本实现datax全量同步mysql到hive

文章目录 前言一、展示脚本二、使用准备1、安装python环境2、安装EPEL3、安装脚本执行需要的第三方模块 三、脚本使用方法1、配置脚本2、创建.py文件3、执行脚本4、测试生成json文件是否可用 前言 在我们构建离线数仓时或者迁移数据时&#xff0c;通常选用sqoop和datax等工具进…...

Python爬虫教程:从入门到精通

Python爬虫教程&#xff1a;从入门到精通 前言 在信息爆炸的时代&#xff0c;数据是最宝贵的资源之一。Python作为一种简洁而强大的编程语言&#xff0c;因其丰富的库和框架&#xff0c;成为了数据爬取的首选工具。本文将带您深入了解Python爬虫的基本概念、实用技巧以及应用…...

pytorh学习笔记——cifar10(四)用VGG训练

1、新建train.py&#xff0c;执行脚本训练模型&#xff1a; import os import timeimport torch import torch.nn as nn import torchvisionfrom vggNet import VGGbase, VGGNet from load_cifar import train_loader, test_loader import warnings import tensorboardX# 忽略…...

CRLF、UTF-8这些编辑器右下角的选项的意思

经常使用编辑器的小伙伴应该经常能看到右下角会有这么两个选项&#xff0c;下图是VScode中的示例&#xff0c;那么这两个到底是啥作用呢&#xff1f; 目录 字符编码ASCII 字符集GBK 字符集Unicode 字符集UTF-8 编码 换行 字符编码 此部分参考博文 在计算机中&#xff0c;所有…...

【C++干货篇】——类和对象的魅力(四)

【C干货篇】——类和对象的魅力&#xff08;四&#xff09; 1.取地址运算符的重载 1.1const 成员函数 将const修饰的成员函数称之为const成员函数&#xff0c;const修饰成员函数放到成员函数参数列表的后面。const实际修饰该成员函数隐含的this指针&#xff08;this指向的对…...

基于java的诊所管理系统源码,SaaS门诊信息系统,二次开发的不二选择

门诊管理系统源码&#xff0c;诊所系统源码&#xff0c;saas服务模式 医疗信息化的新时代已经到来&#xff0c;诊所管理系统作为诊所管理和运营的核心工具&#xff0c;不仅提升了医疗服务的质量和效率&#xff0c;也为患者提供了更加便捷和舒适的就医体验&#xff0c;同时还推动…...

O2OA如何实现文件跨服务器的备份

O2OA可以外接存储服务器&#xff0c;但是一个存储服务器上怕磁盘损坏等问题导致文件丢失&#xff0c;所以需要实现文件跨服务器备份。 整体过程&#xff1a; 1、SSH免密登录配置 2、增加一个同步推送文件的.sh文件 3、编辑crontab 增加定时任务执行上一步的.sh文件 一、配…...

语音提示器-WT3000A离在线TTS方案-打破语种限制/AI对话多功能支持

前言&#xff1a; TTS&#xff08;Text To Speech &#xff09;技术作为智能语音领域的重要组成部分&#xff0c;能够将文本信息转化为逼真的语音输出&#xff0c;为各类硬件设备提供便捷的语音提示服务。本方案正是基于唯创知音的离在线TTS&#xff08;离线本地音乐播放与在线…...

使用HAL库的STM32工程,实现DMA传输USART发送接收数据

以串口3为例&#xff0c;初始化部分为STM32CubeMX生成代码 串口初始化 UART_HandleTypeDef huart3; DMA_HandleTypeDef hdma_usart3_rx; DMA_HandleTypeDef hdma_usart3_tx;/* USART3 init function */ void MX_USART3_UART_Init(void) {/* USER CODE BEGIN USART3_Init 0 */…...

常用排序算法总结

内容目录 1. 选择类排序 1.1 直接选择排序1.2 堆排序 2. 交换类排序 2.1 冒泡排序2.2 快速排序 3. 插入类排序 3.1 直接插入排序3.2 希尔排序 4. 其它排序 4.1 归并排序4.2 基数排序/桶排序 排序 1. 选择类排序 选择类排序的特征是每次从待排序集合中选择出一个最大值或者最…...

[项目详解][boost搜索引擎#2] 建立index | 安装分词工具cppjieba | 实现倒排索引

目录 编写建立索引的模块 Index 1. 设计节点 2.基本结构 3.(难点) 构建索引 1. 构建正排索引&#xff08;BuildForwardIndex&#xff09; 2.❗构建倒排索引 3.1 cppjieba分词工具的安装和使用 3.2 引入cppjieba到项目中 倒排索引代码 本篇文章&#xff0c;我们将继续项…...

R语言编程

一、R语言在机器学习中的优势 R语言是一种广泛用于统计分析和数据可视化的编程语言,在机器学习领域也有诸多优势。 丰富的包:R拥有大量专门用于机器学习的包。例如,caret包是一个功能强大的机器学习工具包,它提供了统一的接口来训练和评估多种机器学习模型,如线性回归、决…...

Mysql主主互备配置

在现有运行的mysql环境下&#xff0c;修改相关配置项&#xff0c;完成主主互备模式的部署。 下面的配置说明中设置的mysql互备对应服务器IP为&#xff1a; 192.168.1.6 192.168.1.7 先检查UUID 在mysql的数据目录下&#xff0c;检查主备mysql的uuid&#xff08;如下的server-…...

如何预防数据打架?数据仓库如何保持指标数据一致性开发指南(持续更新)

大数据开发人员最经常遇到尴尬和麻烦的事是,指标开发好了,以为万事大吉了。被业务和运营发现这个指标在不同地方数据打架,显示不同的数值。为了保证指标数据一致性,要从整个开发流程做好。 目录 一、数据仓库架构规划 二、数据抽取与转换 三、数据存储管理 四、指标管…...

我谈Canny算子

在Canny算子的论文中&#xff0c;提出了好的边缘检测算子应满足三点&#xff1a;①检测错误率低——尽可能多地查找出图像中的实际边缘&#xff0c;边缘的误检率&#xff08;将边缘识别为非边缘&#xff09;低&#xff0c;且避免噪声产生虚假边缘&#xff08;将非边缘识别为边缘…...

算法的学习笔记—平衡二叉树(牛客JZ79)

&#x1f600;前言 在数据结构中&#xff0c;二叉树是一种重要的树形结构。平衡二叉树是一种特殊的二叉树&#xff0c;其特性是任何节点的左右子树高度差的绝对值不超过1。本文将介绍如何判断一棵给定的二叉树是否为平衡二叉树&#xff0c;重点关注算法的时间复杂度和空间复杂度…...

SSM学习day01 JS基础语法

一、JS基础语法 跟java有点像&#xff0c;但是不用注明数据类型 使用var去声明变量 特点1&#xff1a;var关键字声明变量&#xff0c;是为全局变量&#xff0c;作用域很大。在一个代码块中定义的变量&#xff0c;在其他代码块里也能使用 特点2&#xff1a;可以重复定义&#…...

kubeadm快速自动化部署k8s集群

目录 一、准备环境 二、安装docker--三台机器都操作 三、使用kubeadm部署Kubernetes 在所有节点安装kubeadm和kubelet、kubectl 配置启动kubelet(所有主机) master节点初始化 Mater重新完成初始化 执行Master初始化后的提示配置 配置使用网络插件 创建flannel网络 …...

解决JAVA使用@JsonProperty序列化出现字段重复问题(大写开头的字段重复序列化)

文章目录 引言I 解决方案方案1:使用JsonAutoDetect注解方案2:手动编写get方法,JsonProperty注解加到方法上。方案3:首字母改成小写的II 知识扩展:对象默认是怎样被序列化?引言 需求: JSON序列化时,使用@JsonProperty注解,将字段名序列化为首字母大写,兼容前端和第三方…...

分布式理论基础

文章目录 1、理论基础2、CAP定理1_一致性2_可用性3_分区容错性4_总结 3、BASE理论1_Basically Available&#xff08;基本可用&#xff09;2_Soft State&#xff08;软状态&#xff09;3_Eventually Consistent&#xff08;最终一致性&#xff09;4_总结 1、理论基础 在计算机…...

Java应用程序的测试覆盖率之设计与实现(二)-- jacoco agent

说在前面的话 要想获得测试覆盖率报告,第一步要做的是,采集覆盖率数据,并输入到tcp。 而本文便是介绍一种java应用程序部署下的推荐方式。 作为一种通用方案,首先不想对应用程序有所侵入,其次运维和管理方便。 正好,jacoco agent就是类似于pinpoint agent一样,都使用…...

【机器学习】13. 决策树

决策树的构造 策略&#xff1a;从上往下学习通过recursive divide-and-conquer process&#xff08;递归分治过程&#xff09; 首先选择最好的变量作为根节点&#xff0c;给每一个可能的变量值创造分支。然后将样本放进子集之中&#xff0c;从每个分支的节点拓展一个。最后&a…...

《a16z : 2024 年加密货币现状报告》解析

加密社 原文链接&#xff1a;State of Crypto 2024 - a16z crypto译者&#xff1a;AI翻译官&#xff0c;校对&#xff1a;翻译小组 当我们两年前第一次发布年度加密状态报告的时候&#xff0c;情况跟现在很不一样。那时候&#xff0c;加密货币还没成为政策制定者关心的大事。 比…...

可以做ppt的网站有哪些/网店运营的工作内容

在项目中经常遇到要动态生成控件&#xff0c;动态显示指定的控件或者隐藏&#xff0c;这就要涉及到查找控件的问题。 下面介绍下Winform中使用控件名来查找窗体或者容器中的控件的方法&#xff0c;代码如下&#xff1a; /// <summary> /// 通过控件名获取控件…...

网站开通支付宝收款/中国体育新闻

一.环境说明搭建机器&#xff1a;一台Mac Book Pro开发工具&#xff1a;XCode V7.3.1开发环境&#xff1a;OS X EI Capitan 版本 10.11.5jenkins版&#xff1a;V1.647(特别注意&#xff1a;我用的是V1.647&#xff0c;如果使用其他版本可能导致一些未知的BUG)比如我之前用了最新…...

wordpress外链url/seo关键词排名优化怎么样

目前Java中switch语句支持的数据类型包括&#xff1a;byte、short、int、char、String以及Enum&#xff0c;那么switch语句是如何实现的呢&#xff1f;一、switch对整型的支持public void switchInt(int value) {switch (value) {case 1:System.out.println("1");bre…...

关于做无机化学实验的网站/软件关键词排名

BBED这是Oracle一款内部工具&#xff0c;可以直接修改Oracle数据文件块的内容&#xff0c;在一些极端恢复场景下比较有用。使用起来也很方便&#xff0c;当然该工具不受Oracle支持&#xff0c;所以默认是没有生成可执行文件的&#xff0c;在使用前需要重新连接。在9i/10g中连接…...

网站开发人员绩效如何计算/外贸接单平台网站

Webx入口点&#xff1a;(webx2:WebxControllerServlet, webx3:WebxFrameworkFilter) 1、wex3分析 webx3采用了和spring相同的设计思路&#xff0c;在创建bean的时候&#xff0c;存在factory bean的概念&#xff0c;不过换了名字为ToolFactory 其中涉及2个方法&#xff0c;分别是…...

公司网站建设山东/站长统计app下载大全

swap 是一个有趣的函数。最早作为 STL 的一部分被引入&#xff0c;后来它成为异常安全编程&#xff08;exception-safe programming&#xff09;的支柱&#xff08;参见 Item 29&#xff09;和压制自赋值可能性的通用机制&#xff08;参见 Item 11&#xff09;。因为 swap 太有…...