从本地到云端:跨用户请求问题的完美解决方案
对于某些单个请求或响应中含有多个用户信息的服务,SDK提供了一套基于统一的UCS拆分和聚合的解决方案供开发者使用。
请求拆分
对于跨用户服务的请求,我们提供了两个处理方案:
 【1】根据用户信息拆分请求: 场景:请求内含有对应多个用户的对象列表。例如批量查询,批量匹配订单进行批量操作。
Map<SwitchTag, R> split(R originalRequest,  //  原始的请求RequestType。String splitItemCollectionFieldName,  // 请求内含有多个用户信息的对象集合,由于契约限制必须为List类型。Function<T, K> splitKeyGetter,  // 获取上述多用户对象集合内用来分割请求的key,支持的类型参照上文MappingFieldType的类型。MappingFieldType keyType) throws RequestSplitException;   // 分割请求的key对应的类型
示例用法:以特殊事件强绑接口为例,EditForceMatchedOrderRequest中,forceMatchedOrderList内可能会包含多个不同用户的订单,且对象内含有订单号的信息,可以用来匹配用户的uid。代码如下:
MultiUserRequestSplitter splitter = MultiUserRequestSplitterImpl.getInstance();
EditForceMatchedOrderRequest request = new EditForceMatchedOrderRequest();
try {Map<SwitchTag, EditForceMatchedOrderRequest> splitRequests =splitter.split(request,"forceMatchedOrderList",ForceMatchedOrder::getOrderId,MappingFieldType.FLIGHT_ORDER_ID);} catch (RequestSplitException e) {// exception process
}
【2】广播请求至所有Region: 场景:请求中不含有用户信息,但是返回结果会存在多个用户的数据。例如最终行程匹单,利用规则ID查询所有匹配特殊事件规则的订单。
Map<SwitchTag, R> broadcast(R originalRequest) throws RequestSplitException;
用户只需要提供原始的请求,该方法就会将该请求复制多份到每个region。
以查询强绑订单为例,QueryForceMatchedOrderRequest中,可以只传入configId,匹配所有符合该id的订单。代码如下:
MultiUserRequestSplitter splitter = MultiUserRequestSplitterImpl.getInstance();
QueryForceMatchedOrderRequest request = new QueryForceMatchedOrderRequest();
try {Map<SwitchTag, QueryForceMatchedOrderRequest> splitRequests = splitter.split(request);
} catch (RequestSplitException e) {// exception process
}
请求执行
SDK中提供了标准的api可以让开发者方便的执行被拆分出来的请求。API列表如下:
List<RequestExecutionContext<R,P>> execRequests(Map<SwitchTag, R> requestMap,Class<P> responseClz,C serviceClient,String operationName) throws RequestExecutionException;
RequestExecutionContext<R,P> execRequest(SwitchTag switchTag,R request,Class<P> responseClz,C serviceClient,String operationName) throws RequestExecutionException;
大部分情况下,开发者只需调用execRequests方法,传入上述拆分功能返回的请求列表,以及调用客户端相关信息即可。当且仅当开发者对调用顺序有严格要求,或需要对每次请求单独做自定义异常处理,可以调用execRequest进行单个请求逐个执行。
以特殊事件强绑接口为例,使用请求拆分功能后紧接着实际发送请求的示例代码为:
MultiUserRequestExecutor executor = MultiUserRequestExecutorImpl.getInstance();
List<RequestExecutionContext<EditForceMatchedOrderRequest, EditForceMatchedOrderResponse>> execResults =executor.execRequests(// 拆分后的请求列表splitRequests,// 请求的响应契约类型EditForceMatchedOrderResponse.class,// 请求的客户端实例FlightchangeSpecialeventServiceClient.getInstance(),// 请求的对应操作名"editForceMatchedOrder");
返回值中的RequestExecutionContext对象包括了请求,响应,SwitchTag以及该次请求的异常信息,一般来说无需关心。
请求聚合
SDK中提供了一些标准的api来对拆分后不同用户的多个请求的一系列响应做聚合,最终返回客户端的只有一个响应对象,使得业务代码中除了调用部分之外的代码可以保持一致。
响应聚合的方式主要包括以下三类:根据UCS策略聚合
P aggregateByUCS(List<RequestExecutionContext<R,P>> responseContext,// 可以不传,则默认有响应都是成功,不进行过滤Predicate<P> failedRespPredictor,String itemCollectionFieldName,Function<T, K> splitKeyGetter,MappingFieldType keyType) throws Exception;
场景:广播请求后返回了多个区域的多个用户的请求,需要筛选出Region中灰度范围内用户的数据,保证数据新鲜度。
其中,responseContext为上述请求执行后返回的包装结果,failedRespPredictor为判断单个响应是否成功的函数,其余参数和请求拆分中的定义保持一致(用户信息对象为响应中的对象)。
注意:返回的响应集合中,如果有一个响应经过failedRespPredictor判断为失败,则默认情况下,会认为整个请求失败,返回该失败的响应。该行为可以通过配置ignoreFailureAndExceptions改变,后续配置项介绍会详细说明。
示例代码:以用规则ID查询所有匹配的强绑规则订单为例,该场景下请求内仅含有需要查询的规则ID无用户信息,所以被广播到了SHA和SIN两个Region同时进行查询。现在需要对查询结果做聚合:
MultiUserResponseAggregator aggregator = MultiUserResponseAggregatorImpl.getInstance();
QueryForceMatchedOrderResponse aggregated = aggregator.aggregateByUCS(execResults,response -> response.getResponseStatus().getAck() != AckCodeType.Success,"forceMatchedOrderList",ForceMatchedOrder::getOrderId,MappingFieldType.FLIGHT_ORDER_ID);
// handle response as used to be
聚合全量不同的结果
P aggregateAllDistinct(List<RequestExecutionContext<R,P>> responseContext,String itemCollectionFieldName,// 判断两个含有用户信息的对象是否属于同一个业务记录的函数,默认为Object.equalsBiPredicate<T, T> itemEqualPredictor,// 可以不传,则默认有响应都是成功,不进行过滤Predicate<P> failedRespPredictor) throws Exception;
场景:批量操作请求按照用户被拆分成多个后,需要获取所有响应进行展示,或数据完全隔离后单边进行查询。
示例场景:以特殊事件强绑接口为例,请求按照用户被拆分成多个请求后,返回的响应是操作失败的订单列表,此时只需要聚合所有失败的订单返回给客户端即可。示例代码如下:
MultiUserResponseAggregator aggregator = MultiUserResponseAggregatorImpl.getInstance();
EditForceMatchedOrderResponse response = aggregator.aggregateAllDistinct(execResults,"updateFailedList",// 返回的itemCollection为Long,直接使用默认的Object.equals比较即可null,// 无特别的响应状态码,默认即可null);
返回任意结果(任意成功/任意失败/失败优先)
// 任意成功
P getAnySuccessResponse(List<RequestExecutionContext<R,P>> responseContext, Predicate<P> successRespPredictor);
// 失败优先
<R extends SpecificRecord, P extends SpecificRecord>
P getAnyResponseWithFailFast(List<RequestExecutionContext<R,P>> responseContext,Predicate<P> failedRespPredictor) throws Exception;
// 所有失败
<R extends SpecificRecord, P extends SpecificRecord>
List<RequestExecutionContext<R,P>> getAllFailedResponseContext(List<RequestExecutionContext<R,P>> responseContext, Predicate<P> failedRespPredictor);
场景:批量操作请求按照用户被拆分成多个后,响应中不含有用户信息,仅存在成功/失败/状态码的字段
典型场景示例代码:综合以上的用法,我们针对典型的场景给出两套标准的示例代码:
 【1】批量编辑强绑订单,请求中含有多个待编辑的订单信息,响应为编辑失败的订单号集合
private EditForceMatchedOrderResponse editForceMatchedOrder(EditForceMatchedOrderRequest request) {
MultiUserRequestSplitter splitter = MultiUserRequestSplitterImpl.getInstance();MultiUserRequestExecutor executor = MultiUserRequestExecutorImpl.getInstance();MultiUserResponseAggregator aggregator = MultiUserResponseAggregatorImpl.getInstance();
try {Map<SwitchTag, EditForceMatchedOrderRequest> splitRequests =splitter.split(request,"forceMatchedOrderList",ForceMatchedOrder::getOrderId,MappingFieldType.FLIGHT_ORDER_ID);
List<RequestExecutionContext<EditForceMatchedOrderRequest, EditForceMatchedOrderResponse>> execResults = executor.execRequests(splitRequests,EditForceMatchedOrderResponse.class,FlightchangeSpecialeventServiceClient.getInstance(),"editForceMatchedOrder");
return aggregator.aggregateAllDistinct(execResults, "updateFailedList", null, null);} catch (Exception e) {// exception process}
}
【2】根据强绑规则ID查询所有匹配的订单信息,请求中只含有规则ID,响应为所有匹配的订单信息的集合
private QueryForceMatchedOrderResponse queryForceMatchedOrder(QueryForceMatchedOrderRequest request) {MultiUserRequestSplitter splitter = MultiUserRequestSplitterImpl.getInstance();MultiUserRequestExecutor executor = MultiUserRequestExecutorImpl.getInstance();MultiUserResponseAggregator aggregator = MultiUserResponseAggregatorImpl.getInstance();
try {Map<SwitchTag, QueryForceMatchedOrderRequest> splitRequests = splitter.broadcast(request);
List<RequestExecutionContext<QueryForceMatchedOrderRequest, QueryForceMatchedOrderResponse>> execResults = executor.execRequests(splitRequests,QueryForceMatchedOrderResponse.class,FlightchangeSpecialeventServiceClient.getInstance(),"queryForceMatchedOrder");
return aggregator.aggregateByUCS(execResults,"forceMatchedOrderList",ForceMatchedOrder::getOrderId,MappingFieldType.FLIGHT_ORDER_ID);} catch (Exception e) {// exception process}
}
配置项列表
为了启用SDK中的多用户请求处理功能,开发者必须在客户端的QConfig上新建名为requestprocessorconfig.json的配置文件, 并按照目标操作的维度配置必要的信息。示例的配置文件如下:
[{"requestTypeFullName" : "com.huwei.soa.flight.flightchange.specialevent.v1.EditForceMatchedOrderRequest", // 要调用的操作的请求契约全类名"targetServiceCode" : "24249",  // 要调用的服务对应的serviceCode,用于关联UCS策略以及路由规则"splitterSettings" : {"enableRequestSplit" : true,  // 是否打开请求拆分功能,默认不打开,即原样转发请求"splitMode" : "BY_UID",  // 拆分的模式"interruptOnUDLError" : false, // 查询UDL信息出现异常如超时时,是否直接中断当前请求。默认或设置为false时,查询UDL出错,请求会继续被执行,但是不会带上UDL信息,所以都会被路由到SHA。设置为true时,查询UDL出错,方法直接抛错中断执行"allowNullSplitKey": false // 默认情况下,split key为空的时候走SHA。设置为true后,split key为空的时候,该key会拆分为广播的请求。场景为某些特殊的批量查询下,查询的key即可能是订单号也有可能是规则ID。},"executorSettings" : {"enableConcurrentExecute" : false, // 是否启用并发请求。当拆分后的用户数量很多,或客户端对响应时间比较敏感的情况下,该选项设置为true可以开启并发执行。默认为不开启。"concurrentExecThreshold" : 10,  // 并发执行的请求个数阈值。默认为0。当并发请求开启后,可以通过设置该值,来达到仅当拆分后请求数量大于该阈值才并发执行的效果。"maxConcurrentThreads" : 16, // 最大并发线程数,仅对当前操作生效。"interruptOnRemoteCallError" : false, // 是否在远程调用发生异常时立即中断。默认为不中断。"execTimeoutMillis" : 3000, // 并发执行时,总体的超时时间(单位ms)。默认为10秒。"requestFormat" : "json" // 调用服务端时的请求格式,针对服务端只接受特定的格式的场景。默认即跟随baiji框架设置。},"aggregatorSettings" : {"ignoreFailureAndExceptions" : false, // 是否在聚合时忽略异常和失败的请求,默认为不忽略。设置为true时,异常或失败的请求会被跳过,系统只会聚合合法的响应并返回客户端。"dataInconsistentErrorLogLevel" : "INFO", // 当Region之间数据不一致时,log信息的级别。可选有INFO, ERROR, DISABLE"disableUCSFiltering" : false // 在数据完全隔离后,跳过UCS过滤的步骤,直接聚合全量数据。}},...
]
splitMode:拆分的模式
 【1】BY_UID:默认的每个用户拆分一个请求,适用于绝大部分情况;
 【2】BY_UDL:(使用前请联系上云组评估)仅当单个批量请求的用户可能非常多导致性能问题时使用;
 【3】BROADCAST: 广播模式,同一个请求复制到所有Region;
相关文章:
从本地到云端:跨用户请求问题的完美解决方案
对于某些单个请求或响应中含有多个用户信息的服务,SDK提供了一套基于统一的UCS拆分和聚合的解决方案供开发者使用。 请求拆分 对于跨用户服务的请求,我们提供了两个处理方案: 【1】根据用户信息拆分请求: 场景:请求内…...
leetcode day4 409+5
409 最长回文串 给定一个包含大写字母和小写字母的字符串 s ,返回 通过这些字母构造成的 最长的 回文串 的长度。 在构造过程中,请注意 区分大小写 。比如 "Aa" 不能当做一个回文字符串。 示例 1: 输入:s "abccccdd" 输出:7 解…...
 
英语语法学习框架(考研)
一、简单句 英语都是由简单句构成,简单句共有五种基本句型:①主谓;②主谓宾;③主谓宾宾补;④主谓宾间宾(间接宾语);⑤主系表; 其中谓语是句子最重要的部分,谓…...
 
基于neo4j的学术论文关系管理系统
正在为毕业设计头疼?又或者在学术研究中总是找不到像样的工具来管理浩瀚的文献资料?今天给大家介绍一款超实用的工具——基于Neo4j的学术论文关系管理系统,让你轻松搞定学术文献的管理与展示!🎉 系统的核心是什么呢&a…...
 
C#中的委托、匿名方法、Lambda、Action和Func
委托 委托概述 委托是存有对某个方法的引用的一种引用类型变量。定义方法的类型,可以把一个方法当作另一方法的参数。所有的委托(Delegate)都派生自 System.Delegate 类。委托声明决定了可由该委托引用的方法。 # 声明委托类型 委托类型声…...
 
IDEA关联Tomcat——最新版本IDEA 2024
1.链接Tomcat到IDEA上 添加Tomcat到IDEA上有两种方式: 第一种: (1)首先,来到欢迎界面,找到左侧的Customize选项 (2)然后找到Build、Execution、Deployment选项 (3&am…...
【如何获取股票数据18】Python、Java等多种主流语言实例演示获取股票行情api接口之沪深A股解禁限售数据获取实例演示及接口API说明文档
最近一两年内,股票量化分析逐渐成为热门话题。而从事这一领域工作的第一步,就是获取全面且准确的股票数据。因为无论是实时交易数据、历史交易记录、财务数据还是基本面信息,这些数据都是我们进行量化分析时不可或缺的宝贵资源。我们的主要任…...
 
NVR小程序接入平台/设备EasyNVR多品牌NVR管理工具/设备的多维拓展与灵活应用
在数字化安防时代,NVR批量管理软件/平台EasyNVR作为一种先进的视频监控系统设备,正逐步成为各个领域监控解决方案的首选。NVR批量管理软件/平台EasyNVR作为一款基于端-边-云一体化架构的国标视频融合云平台,凭借其部署简单轻量、功能多样、兼…...
 
GPT-4o 和 GPT-4 Turbo 模型之间的对比
GPT-4o 和 GPT-4 Turbo 之间的对比 备注 要弄 AI ,不同模型之间的对比就比较重要。 GPT-4o 是 GPT-4 Turbo 的升级版本,能够提供比 GPT-4 Turbo 更多的内容和信息,但成功相对来说更高一些。 第三方引用 在 2024 年 5 月 13 日࿰…...
 
gin入门教程(10):实现jwt认证
使用 github.com/golang-jwt/jwt 实现 JWT(JSON Web Token)可以有效地进行用户身份验证,这个功能往往在接口前后端分离的应用中经常用到。以下是一个基本的示例,演示如何在 Gin 框架中实现 JWT 认证。 目录结构 /hello-gin │ ├── cmd/ …...
Python 基础语法 - 数据类型
顾名思义,计算机就是用来做数学计算的机器,因此,计算机程序理所当然的可以处理各种数值。但是,计算机能处理的远远不止数值,还可以处理文本,图形,音频,视频,网页等各种各…...
 
自托管无代码数据库Undb
什么是 Undb ? Undb 是一个无代码平台,也可以作为后端即服务 (BaaS)。它基于 SQLite,可以使用 Bun 打包成二进制文件用于后端服务。此外,它可以通过 Docker 部署为服务,提供表管理的 UI。 软件特点: ⚡ 无…...
 
正则的正向前瞻断言和负向前瞻断言
正则的正向前瞻断言和负向前瞻断言 一. 正向前瞻断言二. 负向前瞻断言三. 总结 这是我在这个网站整理的笔记,有错误的地方请指出,关注我,接下来还会持续更新。 作者:神的孩子都在歌唱 正向前瞻断言和负向前瞻断言是正则表达式中用于检查后续字…...
大厂物联网(IoT)高频面试题及参考答案
目录 解释物联网 (IoT) 的基本概念 物联网的主要组成部分有哪些? 描述物联网的基本架构。 IoT 与传统网络有什么区别? 物联网中常用的传感器类型有哪些? 描述物联网的三个主要层次。 简述物联网中数据安全的重要性 描述物联网安全的主要威胁 解释端到端加密在 IoT 中…...
react hook
react hook 最近实习有点忙,所以学习记录没来得及写。 HOC higher order components(HOC) 高阶组件是一个组件,接受一个参数作为组件,返回值也是一个组件的函数。高阶组件作用域强化组件,服用逻辑,提升渲染性能等。…...
 
Jetpack架构组件_LiveData组件
1.LiveData初识 LiveData:ViewModel管理要展示的数据(VM层类似于原MVP中的P层),处理业务逻辑,比如调用服务器的登陆接口业务。通过LiveData观察者模式,只要数据的值发生了改变,就会自动通知VIEW层…...
 
Etcd 可观测最佳实践
简介 Etcd 是一个高可用的分布式键值存储系统,它提供了一个可靠的、强一致性的存储服务,用于配置管理和服务发现。它最初由 CoreOS 开发,现在由 Cloud Native Computing Foundation (CNCF) 维护。Etcd 使用 Raft 算法来实现数据的一致性&…...
 
钉钉录播抓取视频
爬取钉钉视频 免责声明 此脚本仅供学习参考,切勿违法使用下载他人资源进行售卖,本人不但任何责任! 仓库地址: GItee 源码仓库 执行顺序 poxyM3u8开启代理getM3u8url用于获取m3u8文件userAgent随机请求头downVideo|downVideoThreadTqdm单线程下载和…...
 
centos下面的jdk17的安装配置
文章目录 1.基本指令回顾2.jdk17的安装到这个centos上面2.1首先切换到这个root下面去2.2查看系统jdk版本2.3首先到官网找到进行下载2.4安装包的上传2.5jdk17的安装包的解压过程2.6配置环境变量2.7是否设置成功,查看版本 1.基本指令回顾 ls:list也就是列出来这个目录…...
 
【操作系统】——调度
🌹😊🌹博客主页:【Hello_shuoCSDN博客】 ✨操作系统详见 【操作系统专项】 ✨C语言知识详见:【C语言专项】 目录 处理机调度的概念、层次 进程调度的时机、切换与过程、方式 调度器和闲逛进程 处理机调度的概念、层…...
 
练习(含atoi的模拟实现,自定义类型等练习)
一、结构体大小的计算及位段 (结构体大小计算及位段 详解请看:自定义类型:结构体进阶-CSDN博客) 1.在32位系统环境,编译选项为4字节对齐,那么sizeof(A)和sizeof(B)是多少? #pragma pack(4)st…...
Cesium1.95中高性能加载1500个点
一、基本方式: 图标使用.png比.svg性能要好 <template><div id"cesiumContainer"></div><div class"toolbar"><button id"resetButton">重新生成点</button><span id"countDisplay&qu…...
 
成都鼎讯硬核科技!雷达目标与干扰模拟器,以卓越性能制胜电磁频谱战
在现代战争中,电磁频谱已成为继陆、海、空、天之后的 “第五维战场”,雷达作为电磁频谱领域的关键装备,其干扰与抗干扰能力的较量,直接影响着战争的胜负走向。由成都鼎讯科技匠心打造的雷达目标与干扰模拟器,凭借数字射…...
 
多模态大语言模型arxiv论文略读(108)
CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文标题:CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文作者:Sayna Ebrahimi, Sercan O. Arik, Tejas Nama, Tomas Pfister ➡️ 研究机构: Google Cloud AI Re…...
 
Reasoning over Uncertain Text by Generative Large Language Models
https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829 1. 概述 文本中的不确定性在许多语境中传达,从日常对话到特定领域的文档(例如医学文档)(Heritage 2013;Landmark、Gulbrandsen 和 Svenevei…...
 
SiFli 52把Imagie图片,Font字体资源放在指定位置,编译成指定img.bin和font.bin的问题
分区配置 (ptab.json) img 属性介绍: img 属性指定分区存放的 image 名称,指定的 image 名称必须是当前工程生成的 binary 。 如果 binary 有多个文件,则以 proj_name:binary_name 格式指定文件名, proj_name 为工程 名&…...
AGain DB和倍数增益的关系
我在设置一款索尼CMOS芯片时,Again增益0db变化为6DB,画面的变化只有2倍DN的增益,比如10变为20。 这与dB和线性增益的关系以及传感器处理流程有关。以下是具体原因分析: 1. dB与线性增益的换算关系 6dB对应的理论线性增益应为&…...
 
力扣热题100 k个一组反转链表题解
题目: 代码: func reverseKGroup(head *ListNode, k int) *ListNode {cur : headfor i : 0; i < k; i {if cur nil {return head}cur cur.Next}newHead : reverse(head, cur)head.Next reverseKGroup(cur, k)return newHead }func reverse(start, end *ListNode) *ListN…...
Redis:现代应用开发的高效内存数据存储利器
一、Redis的起源与发展 Redis最初由意大利程序员Salvatore Sanfilippo在2009年开发,其初衷是为了满足他自己的一个项目需求,即需要一个高性能的键值存储系统来解决传统数据库在高并发场景下的性能瓶颈。随着项目的开源,Redis凭借其简单易用、…...
在 Spring Boot 项目里,MYSQL中json类型字段使用
前言: 因为程序特殊需求导致,需要mysql数据库存储json类型数据,因此记录一下使用流程 1.java实体中新增字段 private List<User> users 2.增加mybatis-plus注解 TableField(typeHandler FastjsonTypeHandler.class) private Lis…...
