高翔【自动驾驶与机器人中的SLAM技术】学习笔记(十二)拓展图优化库g2o(一)框架
【转载】理解图优化,一步步带你看懂g2o框架
文章来源:理解图优化,一步步带你看懂g2o框架
小白:师兄师兄,最近我在看SLAM的优化算法,有种方法叫“图优化”,以前学习算法的时候还有一个优化方法叫“凸优化”,这两个不是一个东西吧?
师兄:哈哈,这个问题有意思,虽然它们中文发音一样,但是意思差别大着呢!我们来看看英文表达吧,图优化的英文是 graph optimization 或者 graph-based optimization,你看,它的“图”其实是数据结构中的graph。而凸优化的英文是 convex optimization,这里的“凸”其实是凸函数的意思,所以单从英文就能区分开它们。
小白:原来是这样,我看SLAM中图优化用的很多啊,我看了一下高博的书,还是迷迷糊糊的,求科普啊师兄
师兄:图优化真的蛮重要的,概念其实不复杂,主要是编程稍微有点复杂。。
小白:不能同意更多。。,那个代码看的我一脸懵逼。
一、图优化有什么优势?
师兄:按照惯例,我还是先说说图优化的背景吧。
-
SLAM的后端一般分为两种处理方法,
-
一种是以扩展卡尔曼滤波(EKF)为代表的滤波方法,
-
一种是以图优化为代表的非线性优化方法。
-
-
不过,目前SLAM研究的主流热点几乎都是基于图优化的。
小白:据我所知,滤波方法很早就有了,前人的研究也很深。为什么现在图优化变成了主流了?
师兄:你说的没错。滤波方法尤其是EKF方法,在SLAM发展很长的一段历史中一直占据主导地位,早期的大神们研究了各种各样的滤波器来改善滤波效果,那会入门SLAM,EKF是必须要掌握的。顺便总结下滤波方法的优缺点:
-
优点:在当时计算资源受限、待估计量比较简单的情况下,EKF为代表的滤波方法比较有效,经常用在激光SLAM中。
-
缺点:它的一个大缺点就是存储量和状态量是平方增长关系,因为存储的是协方差矩阵,因此不适合大型场景。而现在基于视觉的SLAM方案,路标点(特征点)数据很大,滤波方法根本吃不消,所以此时滤波的方法效率非常低。
小白:原来如此。那图优化在视觉SLAM中效率很高吗?
师兄:这个其实说来话长了。很久很久以前,其实就是不到十年前吧(感觉好像很久),大家还都是用滤波方法,因为在图优化里,Bundle Adjustment(后面简称BA)起到了核心作用。但是那会SLAM的研究者们发现包含大量特征点和相机位姿的BA计算量其实很大,根本没办法实时。
小白:啊?后来发生了什么?(认真听故事ing)
师兄:后来SLAM研究者们发现了其实在视觉SLAM中,虽然包含大量特征点和相机位姿,但其实BA是稀疏的,稀疏的就好办了,就可以加速了啊!比较代表性的就是2009年,几个大神发表了自己的研究成果《SBA:A software package for generic sparse bundle adjustment》,而且计算机硬件发展也很快,因此基于图优化的视觉SLAM也可以实时了!
小白:厉害厉害!向大牛们致敬!
二、图优化是什么?
小白:图优化既然是主流,那我可以跳过滤波方法直接学习图优化吧,反正滤波方法也看不懂。。
师兄:额,图优化确实是主流,以后有需要你可以再去看滤波方法,那我们今天就只讲图优化好啦
小白:好滴,那问题来了,究竟什么是图优化啊?
师兄:图优化里的图就是数据结构里的图,一个图由若干个顶点(vertex),以及连接这些顶点的边(edge)组成,给你举个例子
-
比如一个机器人在房屋里移动,它在某个时刻 t 的位姿(pose)就是一个顶点,这个也是待优化的变量。而位姿之间的关系就构成了一个边,比如时刻 t 和时刻 t+1 之间的相对位姿变换矩阵就是边,边通常表示误差项。
在SLAM里,图优化一般分解为两个任务:
1、构建图。机器人位姿作为顶点,位姿间关系作为边。
2、优化图。调整机器人的位姿(顶点)来尽量满足边的约束,使得误差最小。
下面就是一个直观的例子。我们根据机器人位姿来作为图的顶点,这个位姿可以来自机器人的编码器,也可以是ICP匹配得到的,图的边就是位姿之间的关系。由于误差的存在,实际上机器人建立的地图是不准的,如下图左。我们通过设置边的约束,使得图优化向着满足边约束的方向优化,最后得到了一个优化后的地图(如下图中所示),它和真正的地图(下图右)非常接近。
小白:哇塞,这个图优化效果这么明显啊!刚开始误差那么大,最后都校正过来了
师兄:是啊,所以图优化在SLAM中举足轻重啊,一定得掌握!
小白:好,有学习的动力了!我们开启编程模式吧!
三、先了解g2o 框架
师兄:前面我们简单介绍了图优化,你也看到了它的神通广大,那如何编程实现呢?
小白:对啊,有没有现成的库啊,我还只是个“调包侠”。。
师兄:这个必须有啊!在SLAM领域,基于图优化的一个用的非常广泛的库就是g2o,它是General Graphic Optimization 的简称,是一个用来优化非线性误差函数的c++框架。这个库可以满足你调包侠的梦想~
小白:哈哈,太好了,否则打死我也写不出来啊!那这个g2o怎么用呢?
师兄:我先说安装吧,其实g2o安装很简单,参考GitHub上官网:GitHub - RainerKuemmerle/g2o: g2o: A General Framework for Graph Optimization按照步骤来安装就行了。需要注意的是安装之前确保电脑上已经安装好了第三方依赖。
小白:好的,这个看起来很好装。不过问题是,我看相关的代码,感觉很复杂啊,不知如何下手啊
师兄:别急,第一次接触g2o,确实有这种感觉,而且官网文档写的也比较“不通俗不易懂”,不过如果你能捋顺了它的框架,再去看代码,应该很快能够入手了
小白:是的,先对框架了然于胸才行,不然即使能凑合看懂别人代码,自己也不会写啊!
师兄:嗯嗯,其实g2o帮助我们实现了很多内部的算法,只是在进行构造的时候,需要遵循一些规则,在我看来这是可以接受的,毕竟一个程序不可能满足所有的要求,因此在以后g2o的使用中还是应该多看多记,这样才能更好的使用这个库。
小白:记住了。养成记笔记的好习惯,还要多练习。
师兄:好,那我们首先看一下下面这个图,是g2o的基本框架结构。如果你查资料的话,你会在很多地方都能看到。看图的时候要注意箭头类型
1、图的核心
小白:师兄,这个图该从哪里开始看?感觉好多东西。。
师兄:如果你想要知道这个图中哪个最重要,就去看看箭头源头在哪里
小白:我看看。。。好像是最左侧的SparseOptimizer?
师兄:对的,SparseOptimizer是整个图的核心,我们注意右上角的 is-a 实心箭头,这个SparseOptimizer它是一个Optimizable Graph,从而也是一个超图(HyperGraph)。
小白:我去,师兄,怎么突然冒出来这么多奇怪的术语,都啥意思啊?
师兄:这个你不需要一个个弄懂,不然可能黄花菜都凉了。你先暂时只需要了解一下它们的名字,有些以后用不到,有些以后用到了再回看。目前如果遇到重要的我会具体解释。
小白:好。那下一步看哪里?
2、顶点和边
师兄:我们先来看上面的结构吧。注意看 has-many 箭头,你看这个超图包含了许多顶点(HyperGraph::Vertex)和边(HyperGraph::Edge)。而这些顶点顶点继承自 Base Vertex,也就是OptimizableGraph::Vertex,而边可以继承自 BaseUnaryEdge(单边), BaseBinaryEdge(双边)或BaseMultiEdge(多边),它们都叫做OptimizableGraph::Edge
小白:头有点晕了,师兄
师兄:哈哈,不用一个个记,现阶段了解这些就行。顶点和边在编程中很重要的,关于顶点和边的定义我们以后会详细说的。下面我们来看底部的结构。
小白:嗯嗯,知道啦!
3、配置SparseOptimizer的优化算法和求解器
师兄:你看下面,整个图的核心SparseOptimizer 包含一个优化算法(OptimizationAlgorithm)的对象。OptimizationAlgorithm是通过OptimizationWithHessian 来实现的。其中迭代策略可以从Gauss-Newton(高斯牛顿法,简称GN), Levernberg-Marquardt(简称LM法), Powell's dogleg 三者中间选择一个(我们常用的是GN和LM)
小白:GN和LM就是我们以前讲过的非线性优化方法中常用的两种吧 师兄:是的,如果不了解的话具体看《从零开始学习「张氏相机标定法」(四)优化算法前传》《从零开始学习「张氏相机标定法」(五)优化算法正传》这两篇文章。
4、如何求解
师兄:那么如何求解呢?OptimizationWithHessian 内部包含一个求解器(Solver),这个Solver实际是由一个BlockSolver组成的。这个BlockSolver有两个部分,一个是SparseBlockMatrix ,用于计算稀疏的雅可比和Hessian矩阵;一个是线性方程的求解器(LinearSolver),它用于计算迭代过程中最关键的一步HΔx=−b,LinearSolver有几种方法可以选择:PCG, CSparse, Choldmod,具体定义后面会介绍
到此,就是上面图的一个简单理解。
四、一步步带你看懂g2o编程流程
小白:师兄,看完了我也不知道编程时具体怎么编呢!
师兄:我正好要说这个。首先这里需要说一下,我们梳理是从顶层到底层,但是编程实现时需要反过来,像建房子一样,从底层开始搭建框架一直到顶层。g2o的整个框架就是按照下图中我标的这个顺序来写的。
高博在十四讲中g2o求解曲线参数的例子来说明,源代码地址
Sign in to GitHub · GitHubGitHub is where people build software. More than 100 million people use GitHub to discover, fork, and contribute to over 420 million projects.https://github.com/gaoxiang12/slambook/edit/master/ch6/g2o_curve_fitting/main.cpp
为了方便理解,我重新加了注释。如下所示,
【这部分代码,在后面有新的的补充,转载原文未详细说明】【详情见第六部分】
typedef g2o::BlockSolver< g2o::BlockSolverTraits<3,1> > Block; // 每个误差项优化变量维度为3,误差值维度为1
// 第1步:创建一个线性求解器LinearSolver
Block::LinearSolverType* linearSolver = new g2o::LinearSolverDense<Block::PoseMatrixType>();
// 第2步:创建BlockSolver。并用上面定义的线性求解器初始化
Block* solver_ptr = new Block( linearSolver );
// 第3步:创建总求解器solver。并从GN, LM, DogLeg 中选一个,再用上述块求解器BlockSolver初始化
g2o::OptimizationAlgorithmLevenberg* solver = new g2o::OptimizationAlgorithmLevenberg( solver_ptr );
// 第4步:创建终极大boss 稀疏优化器(SparseOptimizer)
g2o::SparseOptimizer optimizer; // 图模型
optimizer.setAlgorithm( solver ); // 设置求解器
optimizer.setVerbose( true ); // 打开调试输出
// 第5步:定义图的顶点和边。并添加到SparseOptimizer中
CurveFittingVertex* v = new CurveFittingVertex(); //往图中增加顶点
v->setEstimate( Eigen::Vector3d(0,0,0) );
v->setId(0);
optimizer.addVertex( v );
for ( int i=0; i<N; i++ ) // 往图中增加边
{CurveFittingEdge* edge = new CurveFittingEdge( x_data[i] );edge->setId(i);edge->setVertex( 0, v ); // 设置连接的顶点edge->setMeasurement( y_data[i] ); // 观测数值edge->setInformation( Eigen::Matrix<double,1,1>::Identity()*1/(w_sigma*w_sigma) ); // 信息矩阵:协方差矩阵之逆optimizer.addEdge( edge );
}
// 第6步:设置优化参数,开始执行优化
optimizer.initializeOptimization();
optimizer.optimize(100);
结合上面的流程图和代码。下面一步步解释具体步骤。
1、创建一个线性求解器LinearSolver
我们要求的增量方程的形式是:H△X=-b,通常情况下想到的方法就是直接求逆,也就是△X=-H.inv*b。看起来好像很简单,但这有个前提,就是H的维度较小,此时只需要矩阵的求逆就能解决问题。但是当H的维度较大时,矩阵求逆变得很困难,求解问题也变得很复杂。
小白:那有什么办法吗?
师兄:办法肯定是有的。此时我们就需要一些特殊的方法对矩阵进行求逆,你看下图是GitHub上g2o相关部分的代码
如果你点进去看,可以分别查看每个方法的解释,如果不想挨个点进去看,看看下面我的总结就行了
LinearSolverCholmod :使用sparse cholesky分解法。继承自LinearSolverCCS
LinearSolverCSparse:使用CSparse法。继承自LinearSolverCCS
LinearSolverPCG :使用preconditioned conjugate gradient 法,继承自LinearSolver
LinearSolverDense :使用dense cholesky分解法。继承自LinearSolver
LinearSolverEigen: 依赖项只有eigen,使用eigen中sparse Cholesky 求解,因此编译好后可以方便的在其他地方使用,性能和CSparse差不多。继承自LinearSolver
2、创建BlockSolver。并用上面定义的线性求解器初始化。
BlockSolver 内部包含 LinearSolver,用上面我们定义的线性求解器LinearSolver来初始化。它的定义在如下文件夹内:
g2o/g2o/core/block_solver.h
你点进去会发现 BlockSolver有两种定义方式
一种是指定的固定变量的solver,我们来看一下定义
using BlockSolverPL = BlockSolver< BlockSolverTraits<p, l> >;
其中p代表pose的维度(注意一定是流形manifold下的最小表示),l表示landmark的维度
另一种是可变尺寸的solver,定义如下
using BlockSolverX = BlockSolverPL<Eigen::Dynamic, Eigen::Dynamic>;
小白:为何会有可变尺寸的solver呢?
师兄:这是因为在某些应用场景,我们的Pose和Landmark在程序开始时并不能确定,那么此时这个块状求解器就没办法固定变量,此时使用这个可变尺寸的solver,所有的参数都在中间过程中被确定
另外你看block_solver.h的最后,预定义了比较常用的几种类型,如下所示:
BlockSolver_6_3 :表示pose 是6维,观测点是3维。用于3D SLAM中的BA
BlockSolver_7_3:在BlockSolver_6_3 的基础上多了一个scale
BlockSolver_3_2:表示pose 是3维,观测点是2维
以后遇到了知道这些数字是什么意思就行了
3、创建总求解器solver。并从GN, LM, DogLeg 中选一个,再用上述块求解器BlockSolver初始化
我们来看g2o/g2o/core/ 目录下,发现Solver的优化方法有三种:分别是高斯牛顿(GaussNewton)法,LM(Levenberg–Marquardt)法、Dogleg法,如下图所示,也和前面的图相匹配
小白:师兄,上图最后那个OptimizationAlgorithmWithHessian 是干嘛的?
师兄:你点进去 GN、 LM、 Doglet算法内部,会发现他们都继承自同一个类:OptimizationWithHessian,如下图所示,这也和我们最前面那个图是相符的
然后,我们点进去看 OptimizationAlgorithmWithHessian,发现它又继承自OptimizationAlgorithm,这也和前面的相符
总之,在该阶段,我们可以选则三种方法:
g2o::OptimizationAlgorithmGaussNewton
g2o::OptimizationAlgorithmLevenberg
g2o::OptimizationAlgorithmDogleg
4、创建终极大boss 稀疏优化器(SparseOptimizer),并用已定义求解器作为求解方法。
创建稀疏优化器
g2o::SparseOptimizer optimizer;
用前面定义好的求解器作为求解方法:
SparseOptimizer::setAlgorithm(OptimizationAlgorithm* algorithm)
其中setVerbose是设置优化过程输出信息用的,打开调试输出。
SparseOptimizer::setVerbose(bool verbose)
不信我们来看一下它的定义
5、定义图的顶点和边。并添加到SparseOptimizer中。
这部分比较复杂,我们下一次再介绍。后面两个文章:边和顶点。
6、设置优化参数,开始执行优化。
设置SparseOptimizer的初始化、迭代次数、保存结果等。
初始化
SparseOptimizer::initializeOptimization(HyperGraph::EdgeSet& eset)
设置迭代次数,然后就开始执行图优化了。
SparseOptimizer::optimize(int iterations, bool online)
小白:终于搞明白g2o流程了!谢谢师兄!必须给你个「好看」啊!
注:以上内容部分参考了如下文章,感谢原作者:
g2o学习笔记 - 简书
graph slam tutorial : 从推导到应用1-CSDN博客
五、讨论
我们知道(不知道的话,去查一下十四讲)用g2o和ceres库都能用来进行BA优化,这两者在使用过程中有什么不同?
转载内容结束分界线
六、对代码的补充理解
上文中,第四部分中,提到了高翔十四讲中的代码,这部分代码查阅原书,整理补充如下。
首先代码来源:第六章6.3节:《实践:曲线拟合问题》。作者通过一个曲线拟合的例子来讲解如何求解最小二乘问题。
假设一条曲线的方程:
a,b,c为曲线的参数,也就是我们要求解的待拟合的曲线参数。是高斯噪声。满足。
当前有N个关于的观测数据点。用N个数据点拟合求出曲线的参数。
那么最小二乘问题的目标函数如下:
误差定义为:实测值与估计参数计算值之差。
目标:这个估计参数使得所有点的误差和最小。
误差e相对于状态变量(a,b,c)的导数,以及雅可比矩阵:
注意这个 (6.39和6.40),编程代码中,要用到。使用代码如下:
// 计算曲线模型误差virtual void computeError() override {const CurveFittingVertex *v = static_cast<const CurveFittingVertex *> (_vertices[0]);const Eigen::Vector3d abc = v->estimate();_error(0, 0) = _measurement - std::exp(abc(0, 0) * _x * _x + abc(1, 0) * _x + abc(2, 0)); // 公式6.39}// 计算雅可比矩阵virtual void linearizeOplus() override {const CurveFittingVertex *v = static_cast<const CurveFittingVertex *> (_vertices[0]);const Eigen::Vector3d abc = v->estimate(); // 公式6.40求各个误差项对状态变量的导数。进而构建雅可比矩阵。double y = exp(abc[0] * _x * _x + abc[1] * _x + abc[2]); // 公式6.40中,公共部分。_jacobianOplusXi[0] = -_x * _x * y; _jacobianOplusXi[1] = -_x * y;_jacobianOplusXi[2] = -y;}
#include <iostream>
#include <g2o/core/g2o_core_api.h>
#include <g2o/core/base_vertex.h>
#include <g2o/core/base_unary_edge.h>
#include <g2o/core/block_solver.h>
#include <g2o/core/optimization_algorithm_levenberg.h>
#include <g2o/core/optimization_algorithm_gauss_newton.h>
#include <g2o/core/optimization_algorithm_dogleg.h>
#include <g2o/solvers/dense/linear_solver_dense.h>
#include <Eigen/Core>
#include <opencv2/core/core.hpp>
#include <cmath>
#include <chrono>using namespace std;// 曲线模型的顶点,模板参数:优化变量维度和数据类型
class CurveFittingVertex : public g2o::BaseVertex<3, Eigen::Vector3d> {
public:EIGEN_MAKE_ALIGNED_OPERATOR_NEW// 重置virtual void setToOriginImpl() override {_estimate << 0, 0, 0;}// 更新virtual void oplusImpl(const double *update) override {_estimate += Eigen::Vector3d(update);}// 存盘和读盘:留空virtual bool read(istream &in) {}virtual bool write(ostream &out) const {}
};// 误差模型 模板参数:观测值维度,类型,连接顶点类型
class CurveFittingEdge : public g2o::BaseUnaryEdge<1, double, CurveFittingVertex> {
public:EIGEN_MAKE_ALIGNED_OPERATOR_NEWCurveFittingEdge(double x) : BaseUnaryEdge(), _x(x) {}// 计算曲线模型误差virtual void computeError() override {const CurveFittingVertex *v = static_cast<const CurveFittingVertex *> (_vertices[0]);const Eigen::Vector3d abc = v->estimate();_error(0, 0) = _measurement - std::exp(abc(0, 0) * _x * _x + abc(1, 0) * _x + abc(2, 0)); // 公式6.39}// 计算雅可比矩阵virtual void linearizeOplus() override {const CurveFittingVertex *v = static_cast<const CurveFittingVertex *> (_vertices[0]);const Eigen::Vector3d abc = v->estimate(); // 公式6.40求各个误差项对状态变量的导数。进而构建雅可比矩阵。double y = exp(abc[0] * _x * _x + abc[1] * _x + abc[2]); // 公式6.40中,公共部分。_jacobianOplusXi[0] = -_x * _x * y; _jacobianOplusXi[1] = -_x * y;_jacobianOplusXi[2] = -y;}virtual bool read(istream &in) {}virtual bool write(ostream &out) const {}public:double _x; // x 值, y 值为 _measurement
};int main(int argc, char **argv) {double ar = 1.0, br = 2.0, cr = 1.0; // 真实参数值double ae = 2.0, be = -1.0, ce = 5.0; // 估计参数值int N = 100; // 数据点double w_sigma = 1.0; // 噪声Sigma值double inv_sigma = 1.0 / w_sigma;cv::RNG rng; // OpenCV随机数产生器vector<double> x_data, y_data; // 数据for (int i = 0; i < N; i++) {double x = i / 100.0;x_data.push_back(x);y_data.push_back(exp(ar * x * x + br * x + cr) + rng.gaussian(w_sigma * w_sigma));}// 构建图优化,先设定g2otypedef g2o::BlockSolver<g2o::BlockSolverTraits<3, 1>> BlockSolverType; // 每个误差项优化变量维度为3,误差值维度为1typedef g2o::LinearSolverDense<BlockSolverType::PoseMatrixType> LinearSolverType; // 线性求解器类型// 梯度下降方法,可以从GN, LM, DogLeg 中选auto solver = new g2o::OptimizationAlgorithmGaussNewton(g2o::make_unique<BlockSolverType>(g2o::make_unique<LinearSolverType>()));g2o::SparseOptimizer optimizer; // 图模型optimizer.setAlgorithm(solver); // 设置求解器optimizer.setVerbose(true); // 打开调试输出// 往图中增加顶点CurveFittingVertex *v = new CurveFittingVertex();v->setEstimate(Eigen::Vector3d(ae, be, ce));v->setId(0);optimizer.addVertex(v);// 往图中增加边for (int i = 0; i < N; i++) {CurveFittingEdge *edge = new CurveFittingEdge(x_data[i]);edge->setId(i);edge->setVertex(0, v); // 设置连接的顶点edge->setMeasurement(y_data[i]); // 观测数值edge->setInformation(Eigen::Matrix<double, 1, 1>::Identity() * 1 / (w_sigma * w_sigma)); // 信息矩阵:协方差矩阵之逆optimizer.addEdge(edge);}// 执行优化cout << "start optimization" << endl;chrono::steady_clock::time_point t1 = chrono::steady_clock::now();optimizer.initializeOptimization();optimizer.optimize(10);chrono::steady_clock::time_point t2 = chrono::steady_clock::now();chrono::duration<double> time_used = chrono::duration_cast<chrono::duration<double>>(t2 - t1);cout << "solve time cost = " << time_used.count() << " seconds. " << endl;// 输出优化值Eigen::Vector3d abc_estimate = v->estimate();cout << "estimated model: " << abc_estimate.transpose() << endl;return 0;
}
代码中,基于g2o中边和点的类,继承和构建了自己曲线拟合的顶点和边。并在点中,重写了虚类中对顶点的重置和更新(对状态的重置和更新),也重写了边即误差模型的计算方法和雅可比矩阵计算方法。
主函数中,逻辑也比较清晰:
1、用真实参数加上噪声构建观测数据。
2、搭建g2o的框架,构建过程如上描述。构建一个超图架子。
3、然后超图中,增加顶点(待优化参数),增加边(每个观测数据产生一个误差模型)。
4、执行优化,记录时间。
相关文章:
高翔【自动驾驶与机器人中的SLAM技术】学习笔记(十二)拓展图优化库g2o(一)框架
【转载】理解图优化,一步步带你看懂g2o框架 文章来源:理解图优化,一步步带你看懂g2o框架 小白:师兄师兄,最近我在看SLAM的优化算法,有种方法叫“图优化”,以前学习算法的时候还有一个优化方法…...
Flutter Row组件实战案例
In this section, we’ll continue our exploration by combining the Row and Container widgets to create more complex layouts. Let’s dive in! 在本节中,我们将继续探索,结合“Row”和“Container”小部件来创建更复杂的布局。让我们开始吧! Sc…...
【ubuntu20.04】【ROS Noetic】【ROS安装】【Website may be down.】【gpg: 找不到有效的 OpenPGP 数据。】
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 前言一、登入www.ros.org1.Setup your sources.list2.Set up your keys中间出了点问题 gpg: 找不到有效的 OpenPGP 数据。4.Installation下载安装ros5.环境参数的配…...
Python开发必备,这些黑科技库你get到了吗
大家好,今天我要为大家推荐一些非常强大和实用的Python库,相信无论是Python新手还是老司机,都能从中受益,提升你的Python开发技能。那就一起来看看吧! 1.Requests: 简单好用的HTTP请求库 第一个要介绍的是Requests库。它是Python中最流行的HTTP客户端库之一,大大简化了网络请…...
sublime text 常用快捷键
sublimetext常用快捷键 CtrlShiftP:打开命令面板 CtrlP:搜索项目中的文件 CtrlG:跳转到第几行 CtrlW:关闭当前打开文件 CtrlShiftW:关闭所有打开文件 CtrlShiftV:粘贴并格式化 CtrlD:选择单词&a…...
Kubernetes(K8S) + Harbor + Ingress 部署 SpringBoot + Vue 前后端分离项目
文章目录 1、环境准备2、搭建 K8S3、搭建 Harbor4、搭建 MySQL5、构建 SpringBoot 项目镜像6、构建 Vue.js 项目镜像7、部署项目7.1、配置 NameSpace7.2、配置 Deployment、Service7.3、配置 Ingress-Nginx7.4、访问测试 1、环境准备 本次整体项目部署使用的是阿里云ECS服务器…...
【iOS】知乎日报第一周总结
知乎日报第一周总结 文章目录 知乎日报第一周总结前言网络异步导致视图无法加载加载网络上的图片实现一个上拉刷新的效果左上角的时间初步实现了点击cell进入网页小结 前言 笔者在本周算是正式开始写项目了,本周主要是大致完成了主页的内容,大致完成了主…...
Springboot整合spring-boot-starter-data-elasticsearch
前言 <font style"color:rgb(36, 41, 47);">spring-boot-starter-data-elasticsearch</font> 是 Spring Boot 提供的一个起始依赖,旨在简化与 Elasticsearch 交互的开发过程。它集成了 Spring Data Elasticsearch,提供了一套完整…...
【大模型系列】mPLUG-Owl3(2024.08)
Paper: https://arxiv.org/pdf/2408.04840Github: https://github.com/X-PLUG/mPLUG-OwlHuggingFace:https://huggingface.co/mPLUG/mPLUG-Owl3-7B-240728Author: Jiabo Ye et al. 阿里巴巴 文章目录 0 总结(省流版)1 模型结构1.1 Cross-attention Based Achitectur…...
从0到1学习node.js(express模块)
文章目录 Express框架1、初体验express2、什么是路由3、路由的使用3、获取请求参数4、电商项目商品详情场景配置路由占位符规则5、小练习,根据id参数返回对应歌手信息6、express和原生http模块设置响应体的一些方法7、其他响应设置8、express中间件8.1、什么是中间件…...
MambaVision
核心速览 研究背景 研究问题 :这篇文章提出了一种新的混合Mamba-Transformer骨干网络,称为MambaVision,专为视 觉应用量身定制。研究的核心问题是如何有效地结合Mamba的状态空间模型(SSM)和Transf ormer的自注意力机制…...
MySQLDBA修炼之道-开发篇(二)
四、开发进阶 1. 范式和反范式 范式是数据库规范化的一个手段,是数据库设计中的一系列原理和技术,用于减少数据库中的数据冗余,并增进数据的一致性。 范式 1.1 第一范式 第一范式是指数据库表的每一列(属性)都是不可…...
前端必备的环境搭建
一、nvm安装详细教程(安装nvm、node、npm、cnpm、yarn及环境变量配置) 参考地址:nvm安装详细教程(安装nvm、node、npm、cnpm、yarn及环境变量配置)-CSDN博客 说明: 1)关于nodejs目录不显示&a…...
SpringCloud笔记
什么是降级熔断?为什么要进行熔断? 熔断降级是一种分布式系统的保护机制,用于应对服务不稳定或不可用的情况。 熔断是指当某个服务的调用失败次数或异常比例达到一定阈值时,自动切断对该服务的调用,让请求快速失败&…...
优秀的程序员思考数据结构
原文地址:https://read.engineerscodex.com/p/good-programmers-worry-about-data 我最近在这篇很棒的 Stack Overflow 文章中看到了 Linus Torvalds(Linux 和 Git 的创建者)的一句话。(这篇文章回顾了那篇文章中的许多引述。 它…...
「C/C++」C/C++标准库之#include<cstdlib>通用工具库
✨博客主页何曾参静谧的博客📌文章专栏「C/C」C/C程序设计📚全部专栏「VS」Visual Studio「C/C」C/C程序设计「UG/NX」BlockUI集合「Win」Windows程序设计「DSA」数据结构与算法「UG/NX」NX二次开发「QT」QT5程序设计「File」数据文件格式「PK」Parasoli…...
Oracle视频基础1.1.3练习
1.1.3 需求: 完整格式查看所有用户进程里的oracle后台进程 查看物理网卡,虚拟网卡的ip地址 ps -ef | grep oracle /sbin/ifconfig要以完整格式查看所有用户进程中的 Oracle 后台进程,并查看物理和虚拟网卡的 IP 地址,可以使用以下…...
python项目实战——多协程下载美女图片
协程 文章目录 协程协程的优劣势什么是IO密集型任务特点示例与 CPU 密集型任务的对比处理 I/O 密集型任务的方式总结 创建并使用协程asyncio模块 创建协程函数运行协程函数asyncio.run(main())aiohttp模块调用aiohttp模块步骤 aiofiles————协程异步函数遇到的问题一 await …...
基于.NET 8.0,C#中Microsoft.Office.Interop.Excel来操作office365的excel
开发环境: Visual Studio 2022 office365 项目模板:WPF应用程序 框架:.NET 8.0 依赖:Microsoft.Office.Interop.Excel 注意: 1.使用Microsoft.Office.Interop.Excel库时,服务器或电脑里面必须安装得…...
使用无线方式连接Android设备进行调试的两种方法
1.使用配对码配对设备方式 手机(或者平板等安卓设备)和电脑需连接在同一WiFi 下;保证 SDK 为最新版本(adb --version ≥ 30.0.0); step1.手机启用开发者选项和无线调试模式(会提示确认ÿ…...
Valgrind的使用
Valgrind 是一个强大的开源工具,用于检测程序中的内存错误、内存泄漏以及线程问题。它广泛应用于 C/C++ 等需要手动管理内存的编程语言中。以下内容将详细介绍 Valgrind 的安装、基本使用方法、常用命令及其输出结果的解析。 1. 什么是 Valgrind? Valgrind 是一个用于内存调…...
微信小程序瀑布流实现,瀑布流长度不均等解决方法
这是一开始实现的瀑布流,将数据分为奇数列和偶数列 <view class"content-left"><block wx:for"{{list}}" wx:key"list"><template isitem-data data{{...item}} wx:if"{{index % 2 0}}"></template&…...
Notepad++通过自定义语言实现日志按照不同级别高亮
借助Notepad的自定义语言可以实现日志的按照不同级别的高亮; 参考: https://blog.csdn.net/commshare/article/details/131208656 在此基础上做了一点修改效果如下: xml文件: <NotepadPlus><UserLang name"Ansibl…...
2024年四川省大学生程序设计竞赛 补题记录
文章目录 Problem A. 逆序对染色(思维树状数组)Problem B. 连接召唤(贪心)Problem E. L 型覆盖检查器(模拟)Problem F. 小球进洞:平面版(几何)Problem G. 函数查询Proble…...
17_事件的处理
目录 绑定事件与解绑事件优化事件的绑定和解绑方式处理不同事件类型的绑定处理同一事件类型多个事件处理函数事件冒泡与更新时机问题 绑定事件与解绑事件 既然要处理事件,那么首先面临的问题是如何在 vnode 中描述这个事件,在 vnode.props 中࿰…...
1FreeRTOS学习(队列、二值信号量、计数型信号量之间的相同点和不同点)
相同点: (1)传递区间 队列、二值信号量、计数型信号量均可用在任务与任务,任务与中断之间进行消息传递 (2) 传递方式 创建队列--发送队列--接受队列 创建二值信号量--发送二值信号量--接受二值信号量 创建计…...
数据库设计与范式及其应用
数据库设计是数据库管理系统(DBMS)中的核心环节,良好的数据库设计不仅可以提高数据存取的效率,还能增强数据的可维护性和一致性。范式(Normalization)是一种设计原则,用于减少数据冗余和提高数据…...
笔记-配置PyTorch(CUDA 12.2)
文章目录 前言一、安装 PyTorch(CUDA 12.2)1. 创建并激活 Conda 环境2. 安装 PyTorch(CUDA 12.2)3. 安装 torch_geometric 及依赖项4. 验证安装 总结 前言 一、安装 PyTorch(CUDA 12.2) 1. 创建并激活 Con…...
[C++]——红黑树(附源码)
目录 一、前言 二、正文 2.1 红黑树的概念 2.2 红黑树的性质 2.3红黑树节点的定义 2.4 红黑树的插入 2.4.1 情况一 2.4.2 情况二 编辑 2.4.3 情况三 2.5 红黑树的验证 三、全部代码 四、结语 一、前言 在上一篇博客中,为小伙伴们进行了AVL树的讲解&#…...
网络文件系统搭建
在CentOS7上搭建网络文件系统(NFS),并让客户端进行挂载,具体步骤如下: 1. 服务器端操作 安装NFS服务器软件包: 执行以下命令安装NFS服务: sudo yum install nfs-utils -y 启动并启用NFS服务&…...
阿里虚拟主机怎么做两个网站/网络销售管理条例
Listview主要有两个职责: 将数据填充到布局 处理用户的选择点击等操作列表的显示需要三个元素: ListVeiw 用来展示列表的View适配器(Adapter) 用来把数据映射到ListView上的中介数据(data) 具体的将被映射的字符串,图片,或者基本组件首先要了解什么…...
网站百度抓取/google安卓手机下载
需求如下: 有一个教学周历,每个月的第一天显示月份,比如九月、十月、十一月。该月其余的日期直接显示“日”即可。 举例: 原数据显示值2022-07-12122022-08-01八月2022-09-02022022-10-11112022-11-01十一月 方法一:…...
广西做网站找谁/百度网站流量统计
有个富豪找佣人,面试的题目是上厕所,前几个上完后都没有洗手就出来了,富豪因此把他们打发走了只有一个洗了手,于是富豪留下了他.可是有一天,富豪却发现他没有洗手就出来了,富豪问他是为什么?佣人答到&…...
wordpress 第三性/广州优化seo
如何在SqlServer中获取前端连接的IP地址,计算机名等信息 点击打开链接 在一些需求中,可能我们需要知道连接到SqlServer的前端程序的一些系统信息,比如前端连接的计算机名称,IP地址,什么时候开始请求连接,…...
网站开发种类/搜索引擎营销是什么意思
os这个模块提供了一种方便的使用操作系统函数的方法。__file__:这个脚本的相对路径。比如说脚本叫做test.py,那print(__file__)输出的结果就是test.py。os.path.realpath(__file__):这个脚本的绝对路径。os.getcwd():当前工作区的…...
做网站销售是干什么的/培训课程有哪些
# -*- coding: utf-8 -*- import matplotlib.pyplot as plt from skimage.feature import local_binary_pattern import numpy as np import cv2""" 局部二值模式 LBP 1. 在原始图像中取一个3 * 3的区域2. 以中心区域像素为阈值,将周围像素值与其进行…...