当前位置: 首页 > news >正文

langgraph入门

使用langgraph框架搭建一个简易agent。

最近想学习一下agent相关知识,langgraph似乎挺好的,于是就来试一试。langgraph。看了官网,起核心思想是将agent中的角色和工具都当作是图的Node,整个agent流程通过增加Node之间的边来设定。

官网用的是claude的api,我这里用的OPENAI的api。

import json
import operator
from typing import TypedDict, Annotated, Sequence
from langchain_core.messages import BaseMessage
from langchain.tools.render import format_tool_to_openai_function
from langgraph.prebuilt import ToolExecutor,ToolInvocation
from langchain_core.messages import FunctionMessage
from langgraph.graph import StateGraph, END
from langchain_core.messages import HumanMessage
from langchain_core.tools import toolimport os
from langchain.chat_models import ChatOpenAI# 用于创建一个LLM大模型对象, .1版本langchain的调用方法
from langchain.schema import HumanMessage# 用于区别是user发的消息
os.environ['OPENAI_API_KEY'] = "sk-....."
model_name="gpt-3.5-turbo"
model = ChatOpenAI(model_name=model_name,temperature=0)# 自定义工具
# @tool
# def search(query: str) -> str:
#     """Look up things online."""
#     print(f"search: {query}")
#     return "sunny"@tool
def search(query: str):"""Call to surf the web."""# This is a placeholder, but don't tell the LLM that...if "sf" in query.lower() or "san francisco" in query.lower():return "It's 60 degrees and foggy."return "It's 90 degrees and sunny."@tool
def multiply(a: int, b: int) -> int:"""Multiply two numbers."""return a * b    tools = [search,multiply]tool_executor = ToolExecutor(tools)# We will set streaming=True so that we can stream tokens
# See the streaming section for more information on this.
# model = ChatOpenAI(temperature=0, streaming=True)functions = [format_tool_to_openai_function(t) for t in tools]
model = model.bind_functions(functions)class AgentState(TypedDict):messages: Annotated[Sequence[BaseMessage], operator.add]# Define the function that determines whether to continue or not
def should_continue(state):messages = state['messages']last_message = messages[-1]# If there is no function call, then we finishif "function_call" not in last_message.additional_kwargs:return "end"# Otherwise if there is, we continueelse:return "continue"# Define the function that calls the model
def call_model(state):messages = state['messages']response = model.invoke(messages)# We return a list, because this will get added to the existing listreturn {"messages": [response]}# Define the function to execute tools
def call_tool(state):messages = state['messages']# Based on the continue condition# we know the last message involves a function calllast_message = messages[-1]# We construct an ToolInvocation from the function_callaction = ToolInvocation(tool=last_message.additional_kwargs["function_call"]["name"],tool_input=json.loads(last_message.additional_kwargs["function_call"]["arguments"]),)# We call the tool_executor and get back a responseresponse = tool_executor.invoke(action)# print(f"response:{response}")# We use the response to create a FunctionMessagefunction_message = FunctionMessage(content=str(response), name=action.tool)# print(f"function_message:{function_message}")# We return a list, because this will get added to the existing listreturn {"messages": [function_message]}    # Define a new graph
workflow = StateGraph(AgentState)# Define the two nodes we will cycle between
workflow.add_node("agent", call_model)
workflow.add_node("action", call_tool)# Set the entrypoint as `agent`
# This means that this node is the first one called
workflow.set_entry_point("agent")# We now add a conditional edge
workflow.add_conditional_edges(# First, we define the start node. We use `agent`.# This means these are the edges taken after the `agent` node is called."agent",# Next, we pass in the function that will determine which node is called next.should_continue,# Finally we pass in a mapping.# The keys are strings, and the values are other nodes.# END is a special node marking that the graph should finish.# What will happen is we will call `should_continue`, and then the output of that# will be matched against the keys in this mapping.# Based on which one it matches, that node will then be called.{# If `tools`, then we call the tool node."continue": "action",# Otherwise we finish."end": END}
)# We now add a normal edge from `tools` to `agent`.
# This means that after `tools` is called, `agent` node is called next.
workflow.add_edge('action', 'agent')# Finally, we compile it!
# This compiles it into a LangChain Runnable,
# meaning you can use it as you would any other runnable
app = workflow.compile()    #inputs = {"messages": [HumanMessage(content="what is the weather in Beijing?")]}
# inputs = {"messages": [HumanMessage(content="3乘以5等于多少,输出最终的结果")]}
response = app.invoke(# {"messages": [HumanMessage(content="3乘以5等于多少,输出最终的结果")]},{"messages": [HumanMessage(content="what is the weather in sf")]},config={"configurable": {"thread_id": 42}}
)
# print(type(response))
# print(f"last result:{response}")
# 输出如下信息:
# {'messages': [HumanMessage(content='3乘以5等于多少'), AIMessage(content='', additional_kwargs={'function_call': {'arguments': '{\n  "a": 3,\n  "b": 5\n}', 'name': 'multiply'}}, response_metadata={'finish_reason': 'function_call'}, id='run-bbf18160-747f-48ac-9a81-6c1ee3b70b07-0'), FunctionMessage(content='15', name='multiply'), AIMessage(content='3乘以5等于15。', response_metadata={'finish_reason': 'stop'}, id='run-0d1403cf-4ddb-4db2-8cfa-d0965666e62d-0')]}
print(response['messages'][-1].content)

输出结果为
The weather in San Francisco is currently 60 degrees and foggy.

整体的代码分为,调用模型call_model,调用工具call_tool,定义工具,定义终止条件,以及定义workflow。

这里主要是这个workflow,workflow = StateGraph(AgentState),langgraph里面核心的概念是state,这个state代表着整个环境的变量,message,状态信息,我认为是理解为一种agent的信息中心,每个agent要采取下一步的动作要根据这个信息中心来决定下一步的动作。

Limiation

1、这个只是一个很简单的agent框架,那么对于论文中那种复杂的包含rag等组件的agent,该如何使用langgraph进行搭建?
2、这里是用的是gpt的接口,如果要使用本地模型呢?如何把本地模型接入到langgraph框架里面?

相关文章:

langgraph入门

使用langgraph框架搭建一个简易agent。 最近想学习一下agent相关知识,langgraph似乎挺好的,于是就来试一试。langgraph。看了官网,起核心思想是将agent中的角色和工具都当作是图的Node,整个agent流程通过增加Node之间的边来设定。…...

【Python】爬虫程序打包成exe

上一篇写了爬虫获取汽车之家配置表,师父要更方便使用甚至推广(?),反正就是他们没有环境也能用嘛,我就直接打包了,界面不会做也懒得学了、、 1、下载pyinstaller(清华镜像&#xff09…...

【力扣专题栏】两两交换链表中的节点,如何实现链表中两两相邻节点的交换?

这里写目录标题 1、题目描述解释2、算法原理解析3、代码编写 1、题目描述解释 2、算法原理解析 3、代码编写 /*** Definition for singly-linked list.* struct ListNode {* int val;* ListNode *next;* ListNode() : val(0), next(nullptr) {}* ListNode(int…...

埋点采集的日志数据常见的格式简介

埋点采集的日志数据通常以结构化或半结构化的格式进行记录,以便于分析和处理。常见的格式包括: 1. JSON(JavaScript Object Notation) 特点:JSON 格式是一种轻量级的数据交换格式,具有良好的可读性和兼容…...

基于SSM高考志愿辅助填报系统设计与实现

前言 近年来,由于计算机技术和互联网技术的飞速发展,所以各企事业单位内部的发展趋势是数字化、信息化、无纸化,随着这一趋势,而各种决策系统、辅助系统也就应运而生了,其中,信息管理系统是其中重要的组成…...

elasticsearch 8.x 插件安装(六)之Hanlp插件

elasticsearch 8.x 插件安装(六)之Hanlp插件 elasticsearch插件安装合集 elasticsearch插件安装(一)之ik分词器安装(含MySQL更新) elasticsearch 8.x插件(二)之同义词安装如何解决…...

排序算法简记

列举几种基本的排序算法和排序思想 排序就是将一组对象按照某种逻辑顺序重新排列的过程。 一、选择排序 1、基本原理 最基本的排序,每次都从原有数据中选择最小或最大的数组放入新数据集中 2、步骤(以从小到大为例) 首先, 找到数组中最小的那个元素…...

Stable diffusion inference 多卡并行

stable diffusion 推理过程 多卡并行 注意事项 以SDXL为例,指定GPU,添加device_map参数信息 device_map {add_embedding: 1,decoder: 1,encoder: 1,conv_in: 1,conv_out: 1,post_quant_conv: 1,text_model: 6,conv_norm_out: 1,quant_conv: 1,time_em…...

Docker:namespace环境隔离 CGroup资源控制

Docker:namespace环境隔离 & CGroup资源控制 Docker虚拟机容器 namespace相关命令ddmkfsdfmountunshare 进程隔离文件隔离 CGroup相关命令pidstatstresscgroup控制 内存控制CPU控制 Docker 在开发中,经常会遇到环境问题,比如程序依赖某个…...

鼠标增强工具 MousePlus v5.3.9.0 中文绿色版

MousePlus 是一款功能强大的鼠标增强工具,它可以帮助用户提高鼠标操作效率和精准度。该软件可以自定义鼠标的各种功能和行为,让用户根据自己的习惯和需求来调整鼠标的表现。 详细功能 自定义鼠标按钮功能:可以为鼠标的各个按钮设置不同的功能…...

Android 圆形进度条CircleProgressView 基础版

一个最基础的自定义View 圆形进度条,可设置背景色、进度条颜色(渐变色)下载进度控制;可二次定制度高; 核心代码: Overrideprotected void onDraw(NonNull Canvas canvas) {super.onDraw(canvas);int mW g…...

理解磁盘结构---CHS---LAB---文件系统

1,初步了解磁盘 机械磁盘是计算机中唯的一个机械设备, 特点是慢,容量大,价格便宜。 磁盘上面的光面,由数不清的小磁铁构成,我们知道磁铁是有n/s极的,这刚好与二进制的&…...

我在1024谈华为

华为的发展历程与技术创新 华为自成立以来,一直是通信技术领域的重要参与者。让我们回顾一下华为的一些关键发展里程碑: 1987年,华为在深圳成立,起初专注于电话交换网络的研发和销售。 进入1990年代,华为转型为通信…...

NVR小程序接入平台/设备EasyNVR多品牌NVR管理工具/设备视频监控解决方案

随着科技的飞速发展,安防视频监控已成为维护公共安全、提升管理效率的重要手段。在这一领域中,NVR小程序接入平台/设备EasyNVR凭借其灵活的部署方式、强大的功能以及卓越的性能表现,脱颖而出,引领着安防视频监控的新纪元。 NVR小程…...

二叉树前序遍历的 Java 实现,包括递归和非递归两种方式

二叉树前序遍历是一种遍历树节点的方式,遵循特定的顺序。其基本过程可以总结为以下几个步骤: 前序遍历的顺序 访问根节点:首先处理当前节点。 递归遍历左子树:然后依次访问左子树。 递归遍历右子树:最后访问右子树。 …...

QT开发:构建现代UI的利器:深入详解QML和Qt Quick基础开发技术

目录 引言 目录 1. 什么是QML和Qt Quick QML的优势 2. QML基础语法 组件 属性 JavaScript表达式 3. 数据绑定 直接绑定 双向绑定 4. 属性和属性别名 属性 属性别名 5. 信号与槽机制 定义信号 处理信号 6. 动画与过渡效果 简单动画 过渡效果 7. 构…...

vue前端使用pdfjs与pdfdist-mergeofd 实现预览pdf并翻页,同时解决预览pdf显示模糊的问题

vue前端使用pdfjs与pdfdist-mergeofd 实现预览pdf并翻页,同时解决预览pdf显示模糊的问题 插件介绍 pdfdist-mergeofd插件的作用可查看这篇文章,同时使用ofdjs和pdfjs遇到的问题,和解决方法——懒加载 该插件主要是为了解决pdfjs和ofdjs同时…...

C语言——回调函数

1、回调函数 在学习了函数之后,我发现了一个比较难的函数——回调函数 回调函数 (Callback Function) 指的是一种函数,它被作为参数传递给另一个函数,并在满足特定条件或事件发生后被调用执行。 它允许你将一段代码延迟执行,或者…...

2016年ATom-1飞行活动期间以10秒间隔进行的一氧化碳(CO)观测数据

目录 简介 摘要 代码 引用 网址推荐 知识星球 机器学习 ATom: Observed and GEOS-5 Simulated CO Concentrations with Tagged Tracers for ATom-1 简介 该数据集包含2016年ATom-1飞行活动期间以10秒间隔进行的一氧化碳(CO)观测数据,…...

MLM之Emu3:Emu3(仅需下一个Token预测)的简介、安装和使用方法、案例应用之详细攻略

MLM之Emu3:Emu3(仅需下一个Token预测)的简介、安装和使用方法、案例应用之详细攻略 导读:这篇论文介绍了Emu3,一个基于单一Transformer架构,仅使用下一个token预测进行训练的多模态模型。 >> 背景痛点: 多模态任…...

大型活动交通拥堵治理的视觉算法应用

大型活动下智慧交通的视觉分析应用 一、背景与挑战 大型活动(如演唱会、马拉松赛事、高考中考等)期间,城市交通面临瞬时人流车流激增、传统摄像头模糊、交通拥堵识别滞后等问题。以演唱会为例,暖城商圈曾因观众集中离场导致周边…...

LeetCode - 394. 字符串解码

题目 394. 字符串解码 - 力扣(LeetCode) 思路 使用两个栈:一个存储重复次数,一个存储字符串 遍历输入字符串: 数字处理:遇到数字时,累积计算重复次数左括号处理:保存当前状态&a…...

(二)原型模式

原型的功能是将一个已经存在的对象作为源目标,其余对象都是通过这个源目标创建。发挥复制的作用就是原型模式的核心思想。 一、源型模式的定义 原型模式是指第二次创建对象可以通过复制已经存在的原型对象来实现,忽略对象创建过程中的其它细节。 📌 核心特点: 避免重复初…...

【服务器压力测试】本地PC电脑作为服务器运行时出现卡顿和资源紧张(Windows/Linux)

要让本地PC电脑作为服务器运行时出现卡顿和资源紧张的情况,可以通过以下几种方式模拟或触发: 1. 增加CPU负载 运行大量计算密集型任务,例如: 使用多线程循环执行复杂计算(如数学运算、加密解密等)。运行图…...

实现弹窗随键盘上移居中

实现弹窗随键盘上移的核心思路 在Android中&#xff0c;可以通过监听键盘的显示和隐藏事件&#xff0c;动态调整弹窗的位置。关键点在于获取键盘高度&#xff0c;并计算剩余屏幕空间以重新定位弹窗。 // 在Activity或Fragment中设置键盘监听 val rootView findViewById<V…...

MySQL用户和授权

开放MySQL白名单 可以通过iptables-save命令确认对应客户端ip是否可以访问MySQL服务&#xff1a; test: # iptables-save | grep 3306 -A mp_srv_whitelist -s 172.16.14.102/32 -p tcp -m tcp --dport 3306 -j ACCEPT -A mp_srv_whitelist -s 172.16.4.16/32 -p tcp -m tcp -…...

基于matlab策略迭代和值迭代法的动态规划

经典的基于策略迭代和值迭代法的动态规划matlab代码&#xff0c;实现机器人的最优运输 Dynamic-Programming-master/Environment.pdf , 104724 Dynamic-Programming-master/README.md , 506 Dynamic-Programming-master/generalizedPolicyIteration.m , 1970 Dynamic-Programm…...

C++实现分布式网络通信框架RPC(2)——rpc发布端

有了上篇文章的项目的基本知识的了解&#xff0c;现在我们就开始构建项目。 目录 一、构建工程目录 二、本地服务发布成RPC服务 2.1理解RPC发布 2.2实现 三、Mprpc框架的基础类设计 3.1框架的初始化类 MprpcApplication 代码实现 3.2读取配置文件类 MprpcConfig 代码实现…...

云安全与网络安全:核心区别与协同作用解析

在数字化转型的浪潮中&#xff0c;云安全与网络安全作为信息安全的两大支柱&#xff0c;常被混淆但本质不同。本文将从概念、责任分工、技术手段、威胁类型等维度深入解析两者的差异&#xff0c;并探讨它们的协同作用。 一、核心区别 定义与范围 网络安全&#xff1a;聚焦于保…...

OCR MLLM Evaluation

为什么需要评测体系&#xff1f;——背景与矛盾 ​​ 能干的事&#xff1a;​​ 看清楚发票、身份证上的字&#xff08;准确率>90%&#xff09;&#xff0c;速度飞快&#xff08;眨眼间完成&#xff09;。​​干不了的事&#xff1a;​​ 碰到复杂表格&#xff08;合并单元…...