2016年ATom-1飞行活动期间以10秒间隔进行的一氧化碳(CO)观测数据
目录
简介
摘要
代码
引用
网址推荐
知识星球
机器学习
ATom: Observed and GEOS-5 Simulated CO Concentrations with Tagged Tracers for ATom-1
简介
该数据集包含2016年ATom-1飞行活动期间以10秒间隔进行的一氧化碳(CO)观测数据,以及戈达德地球观测系统第5版(GEOS-5)模型为ATom飞行轨迹沿线相应位置模拟的一氧化碳浓度。 大气层析成像任务(ATom)是美国国家航空航天局地球风险亚轨道-2任务,研究人类产生的空气污染对温室气体和大气中化学反应气体的影响。 机载观测数据是利用量子级联激光系统(QCLS)仪器收集的,该仪器是一种用于现场大气气体采样的高频激光光谱仪。 该数据集提供了观测和模拟 CO 的直接比较,将用于为未来的大气建模实验提供信息。 该数据集还包含模拟的标记二氧化碳示踪浓度,它代表了特定区域源对模拟二氧化碳总量的贡献。 该数据集有助于实现 ATom 任务的目标之一,即创建基于观测的重要大气成分化学气候学及其在遥远对流层中的反应性。
摘要
ATom-1是一项针对大气化学研究的航空探测任务,旨在全面了解并测量全球范围内的大气成分。该任务于2016年进行,覆盖了大洋和陆地之间的平流层和对流层,并在不同高度收集了来自不同区域的气体和颗粒物样本。
ATom-1数据中的一个重要方面是对二氧化碳(CO2)浓度与大气成分之间的关系进行观测和模拟。这项研究使用了观测数据和GEOS-5模型模拟数据来对比和分析CO2浓度分布,并使用标记示踪气体来追踪不同地区的气体来源和路径。
具体而言,ATom-1数据提供了全球范围内的CO2浓度观测和模拟结果,并展示了来自不同地区的CO2浓度分布差异。此外,ATom-1还使用了标记示踪气体来分析不同地区的气体来源,以及大气中气体混合和输送的过程。
这些数据对于了解和评估大气CO2浓度的变化和分布具有重要意义,有助于研究全球气候变化和大气污染的影响。通过对观测和模拟数据进行比较,科学家可以提高对大气CO2浓度变化的理解,并进一步改进气候模型和污染控制策略。
代码
!pip install leafmap
!pip install pandas
!pip install folium
!pip install matplotlib
!pip install mapclassifyimport pandas as pd
import leafmapurl = "https://github.com/opengeos/NASA-Earth-Data/raw/main/nasa_earth_data.tsv"
df = pd.read_csv(url, sep="\t")
dfleafmap.nasa_data_login()results, gdf = leafmap.nasa_data_search(short_name="ATom_CO_GEOS_1604",cloud_hosted=True,bounding_box=(-180.0, -65.33, 179.98, 80.01),temporal=("2016-07-21", "2016-08-23"),count=-1, # use -1 to return all datasetsreturn_gdf=True,
)gdf.explore()#leafmap.nasa_data_download(results[:5], out_dir="data")
从 QCLS 观测(左)和 GEOS-5 分析(右)得出的 ATom-1 航路(包括所有 11 个研究飞行段)的一氧化碳(ppb)。 GEOS-5 CO 取自最接近飞行时间中点的分析结果,并根据 10 秒合并观测数据中给出的经度、纬度和气压对飞行轨迹进行内插。 为便于在本图中直观显示,模式预测值和 ATom 测量值均以每 360 秒一次的采样率进行平均。 对流层的数据用圆圈表示;平流层的数据用菱形表示(摘自 Strode 等人,2018 年)。 引用
引用
Strode, S.A., J. Liu, L. Lait, R. Commane, B.C. Daube, S.C. Wofsy, A. Conaty, P. Newman, and M.J. Prather. 2018. ATom: Observed and GEOS-5 Simulated CO Concentrations with Tagged Tracers for ATom-1. ORNL DAAC, Oak Ridge, Tennessee, USA. https://doi.org/10.3334/ORNLDAAC/1604
网址推荐
知识星球
知识星球 | 深度连接铁杆粉丝,运营高品质社群,知识变现的工具 (zsxq.com)
机器学习
https://www.cbedai.net/xg
相关文章:
2016年ATom-1飞行活动期间以10秒间隔进行的一氧化碳(CO)观测数据
目录 简介 摘要 代码 引用 网址推荐 知识星球 机器学习 ATom: Observed and GEOS-5 Simulated CO Concentrations with Tagged Tracers for ATom-1 简介 该数据集包含2016年ATom-1飞行活动期间以10秒间隔进行的一氧化碳(CO)观测数据,…...
MLM之Emu3:Emu3(仅需下一个Token预测)的简介、安装和使用方法、案例应用之详细攻略
MLM之Emu3:Emu3(仅需下一个Token预测)的简介、安装和使用方法、案例应用之详细攻略 导读:这篇论文介绍了Emu3,一个基于单一Transformer架构,仅使用下一个token预测进行训练的多模态模型。 >> 背景痛点: 多模态任…...
Spring Boot与Flyway实现自动化数据库版本控制
一、为什么使用Flyway 最简单的一个项目是一个软件连接到一个数据库,但是大多数项目中我们不仅要处理我们开发环境的副本,还需要处理其他很多副本。例如:开发环境、测试环境、生产环境。想到数据库管理,我们立刻就能想到一系列问…...
input角度:I2C触摸屏驱动分析和编写一个简单的I2C驱动程序
往期内容 本专栏往期内容: input子系统的框架和重要数据结构详解-CSDN博客input device和input handler的注册以及匹配过程解析-CSDN博客input device和input handler的注册以及匹配过程解析-CSDN博客编写一个简单的Iinput_dev框架-CSDN博客GPIO按键驱动分析与使用&…...
SQL-lab靶场less1-4
说明:部分内容来源于网络,如有侵权联系删除 前情提要:搭建sql-lab本地靶场的时候发现一些致命的报错: 这个程序只能在php 5.x上运行,在php 7及更高版本上,函数“mysql_query”和一些相关函数被删除…...
【生成模型之二】diffusion model模型
【算法简历修改、职业规划、校招实习咨询请私信联系】 【Latent-Diffusion 代码】 生成模型分类概述 Diffusion Model,这一深度生成模型,源自物理学中的扩散现象,呈现出令人瞩目的创新性。与传统的生成模型,如VAE、GAN相比&…...
记录 Maven 版本覆盖 Bug 的解决过程
背景 在使用 Maven 进行项目管理时,依赖版本的管理是一个常见且重要的环节。最近,在我的项目中遇到了一个关于依赖版本覆盖的 Bug,这个问题导致了 Apollo 框架的版本不一致,影响了项目的正常运行。以下是我解决这个问题的过程记录…...
【K8S系列】Kubernetes Service 基础知识 详细介绍
在 Kubernetes 中,Service 是一种抽象的资源,用于定义一组 Pod 的访问策略。它为这些 Pod 提供了一个稳定的访问入口,解决了 Pod 可能频繁变化的问题。本文将详细介绍 Kubernetes Service 的类型、功能、使用场景、DNS 和负载均衡等方面。 1.…...
python在物联网领域的数据应用分析与实战!
引言 物联网(IoT)是一个快速发展的领域,涉及到各种设备和传感器的连接与数据交换。随着设备数量的激增,数据的产生速度也在不断加快。 如何有效地分析和利用这些数据,成为了物联网应用成功的关键。Python作为一种强大的编程语言,因其简洁易用的特性和丰富的库支持,成为…...
目标跟踪算法-卡尔曼滤波详解
卡尔曼滤波是一种递归的优化算法,用于估计一个系统的动态状态,常用于跟踪、导航、时间序列分析等领域。它的关键在于使用一系列测量数据(通常含噪声)来估计系统的真实状态,使得估计值更接近实际情况。卡尔曼滤波器适合…...
SpringBoot后端开发常用工具详细介绍——application多环境配置与切换
文章目录 引言介绍application.yml(主配置文件)application-dev.yml(开发环境配置)application-test.yml(测试环境配置)application-prod.yml(生产环境配置)激活配置文件参考内容 引…...
php反序列化漏洞典型例题
1.靶场环境 ctfhub-技能树-pklovecloud 引用题目: 2021-第五空间智能安全大赛-Web-pklovecloud 2.过程 2.1源代码 启动靶场环境,访问靶场环境,显示源码:直接贴在下面: <?php include flag.php; class pks…...
浅析Android View绘制过程中的Surface
前言 在《浅析Android中View的测量布局流程》中我们对VSYNC信号到达App进程之后开启的View布局过程进行了分析,经过对整个App界面的View树进行遍历完成了测量和布局,确定了View的大小以及在屏幕中所处的位置。但是,如果想让用户在屏幕上看到…...
基于卷积神经网络的大豆种子缺陷识别系统,resnet50,mobilenet模型【pytorch框架+python源码】
更多目标检测和图像分类识别项目可看我主页其他文章 功能演示: 大豆种子缺陷识别系统,卷积神经网络,resnet50,mobilenet【pytorch框架,python源码】_哔哩哔哩_bilibili (一)简介 基于卷积神…...
HarmonyOS项目开发一多简介
目录 一、布局能力概述 二、自适应布局 三、响应式布局 四、典型布局场景 一、布局能力概述 布局决定页面元素排布及显示:在页面设计及开发中,布局能力至关重要,主要通过组件结构来确定使用何种布局。 自适应布局与响应式布局࿱…...
C++基础三
构造函数 构造函数(初始化类成员变量): 1、属于类的成员函数之一 2、构造函数没有返回类型 3、构造函数的函数名必须与类名相同 4、构造函数不允许手动调用(不能通过类对象调用) 5、构造函数在类对象创建时会被自动调用 6、如果没有显示声…...
利用ChatGPT完成2024年MathorCup大数据挑战赛-赛道A初赛:台风预测与分析
利用ChatGPT完成2024年MathorCup大数据挑战赛-赛道A初赛:台风预测与分析 引言 在2024年MathorCup大数据挑战赛中,赛道A聚焦于气象数据分析,特别是台风的生成、路径预测、和降水风速特性等内容。本次比赛的任务主要是建立一个分类评价模型&…...
Linux系统操作篇 one -文件指令及文件知识铺垫
Linux操作系统入门-系统篇 前言 Linux操作系统与Windows和MacOS这些系统不同,Linux是黑屏的操作系统,操作方式使用的是指令和代码行来进行,因此相对于Windows和MacOS这些带有图形化界面的系统,Linux的入门门槛和上手程度要更高&…...
隨筆20241028 ISR 的收缩与扩展及其机制解析
在 Kafka 中,ISR(In-Sync Replicas) 是一组副本,它们与 Leader 保持同步,确保数据一致性。然而,ISR 的大小会因多种因素而变化,包括收缩和扩展。以下是 ISR 收缩与扩展的详细解释及其背后的机制…...
linux-字符串相关命令
1、cut 提取文件每一行中的内容 下面是一些常用的 cut 命令选项的说明: -c, --characters列表:提取指定字符位置的数据。-d, --delimiter分界符:指定字段的分隔符,默认为制表符。-f, --fieldsLIST:提取指定字段的数据…...
ES6 函数的扩展
ES6 之前,不能直接为函数的参数指定默认值,只能采用变通的方法 ES6 允许为函数的参数设置默认值,即直接写在参数定义的后面 参数变量是默认声明的,所以不能用 let 或 const 再次声明 使用参数默认值时,函数不能有同名参…...
Mac 查看占用特定端口、终止占用端口的进程
在 macOS 上,可以使用以下命令来查看占用特定端口(例如 8080)的进程: lsof -i :8080命令说明 lsof:列出打开的文件和网络连接信息。-i :8080:筛选出正在监听 8080 端口的进程。 输出结果结构 执行上述命…...
C#入坑JAVA MyBatis入门 CURD 批量 联表分页查询
本文,分享 MyBatis 各种常用操作,不限于链表查询、分页查询等等。 1. 分页查询 在 下文的 的「3.4 selectPage」小节,我们使用 MyBatis Plus 实现了分页查询。除了这种方式,我们也可以使用 XML 实现分页查询。 这里,…...
RabbitMQ 安装(Windows版本)和使用
安装 安装包获取 可以自己找资源,我这里也有百度云的资源,如果没失效的话可以直接用。 通过百度网盘分享的文件:RabbitMQ 链接:https://pan.baidu.com/s/1rzcdeTIYQ4BqzHLDSwCgyw?pwdfj79 提取码:fj79 安装教程…...
Apache paimon表管理
表管理 2.9.4.1 管理快照 1)快照过期 Paimon Writer每次提交都会生成一个或两个快照。每个快照可能会添加一些新的数据文件或将一些旧的数据文件标记为已删除。然而,标记的数据文件并没有真正被删除,因为Paimon还支持时间旅行到更早的快照。它们仅在快照过期时被删除。 …...
java 第19天
一.Lambda表达式 前提是:参数是函数式接口才可以书写Lambda表达式 函数式接口条件: 1.接口 2.只有一个抽象方法 lambda表达式又称为匿名函数,允许匿名函数以参数的形式传入方法,简化代码 lambda表达式分为两部分()->{} …...
什么是服务器?服务器与客户端的关系?本地方访问不了网址与服务器访问不了是什么意思?有何区别
服务器是一种高性能的计算机,它通过网络为其他计算机(称为客户端)提供服务。这些服务可以包括文件存储、打印服务、数据库服务或运行应用程序等。服务器通常具有强大的处理器、大量的内存和大容量的存储空间,以便能够处理多个客户…...
Spring(1)—Spring 框架:Java 开发者的春天
一、关于Spring 1.1 简介 Spring 框架是一个功能强大的开源框架,主要用于简化 Java 企业级应用的开发,由被称为“Spring 之父”的 Rod Johnson 于 2002 年提出并创立,并由Pivotal团队维护。它提供了全面的基础设施支持,使开发者…...
MT1401-MT1410 码题集 (c 语言详解)
目录 MT1401归并排序 MT1402堆排序 MT1403后3位排序 MT1404小大大小排序 MT1405小大大小排序II MT1406数字重排 MT1407插入 MT1408插入 MT1409旋转数组 MT1410逆时针旋转数组 MT1401归并排序 c 语言实现代码 #include <stdio.h>// merge two subarrays void merge(int a…...
React基础语法
1.React介绍 React由Meta公司开发,是一个用于构建Web和原生交互界面的库 1.1 React优势 相较于传统基于DOM开发的优势 1.组件化的开发方式 2.不错的性能 相较于其他前端框架的优势 1.丰富的生态 2.跨平台支持 1.2React的时长情况 全球最流行,大厂…...
长沙模板建站欢迎咨询/如何优化搜索引擎
实变函数习题集-数学与计算科学学院-安庆师范大学实变函数习题集数学与计算科学学院函数论教研室2017年11月目 录第一章 集合……………………………………………………………1第二章 点集……………………………………………………………24第三章 Lebesgue测度………………………...
网站在当地做宣传/百度竞价排名的利与弊
点击左上方蓝字关注我们AI大佬吴恩达每天都会做的一件事:看论文!Paper的重要性不言而喻。然而,论文一直是广大同学的AI“拦路虎”:从阅读到复现,抓不住重点,不了解课题、无法复现......百度作为「中国AI头雁…...
十堰建设银行官方网站/百度小程序优化
在过去很长一段时间内,国内互联网一直处于三足鼎立状态,BAT即百度、阿里巴巴、腾讯。而在最新的互联网企业价值榜上,百度却被蚂蚁金服挤出前三的位置。 能够进一线互联网公司,是大部分程序员奋斗的目标,有很多小伙伴可能因为学历望…...
wordpress和ss一起/网站管理
FinalShell 下载和上传文件方式 本地测试机 找到该文件的目录,点住文件 在右上角有个下载和上传的按钮 分别进行下载和上传的操作 跳板机 进入想要进去的跳板机 在目录输入指令执行下载和上传 本地测试机的方法在这里无法使用!!!…...
做网站写的代号好跟不好的区别/如何建立一个自己的网站
前言 加油 原文 员工培训常用会话 ❶ When is our training session? 我们的课程培训在什么时候? ❷ You shouldn’t be absent at training sessions. 你不能缺席课程培训。 ❸ You should follow these rules and regulations. 你应该遵守这些规章制度。 ❺ The staff…...
宁波网站制作流程/宁波seo优化外包公司
[hadoopmaster1 ~]$ cat zookeeper/conf/zoo.cfg # The number of milliseconds of each tick 每个心跳的时长 单位为毫秒 tickTime2000 # The number of ticks that the initial # synchronization phase can take 初始化同步时期的心跳数 initLimit10 # The number of tick…...