R学习笔记-单因素重复测量方差分析
R语言之重复测量方差分析——ezANOVA的使用与解析 - 知乎
单因素重复测量方差分析(One-Way Repeated Measures ANOVA)——R软件实现 - 梦特医数通
### 清空environment
rm(list = ls())
### 加载包
if (!require("tidyverse")) install.packages("tidyverse")
library(tidyverse)#用于数据清理、操作、可视化和分析
if (!require("conflicted")) install.packages("conflicted")
library(conflicted)#让 R 遇到冲突时抛出错误,并让您明确选择要调用的函数
library(readxl)
if (!require("ez")) install.packages("ez")#用于方差分析
library(ez)
### 读取数据
file_path <- "D:/LLYdata/EEG_EMG_expdata/behavior/result/MATLAB/analysis_data.xlsx"
data <- read_excel(file_path, range = cell_rows(1:25))#读取excel的第1到25行的所有列
### 设置数据
# 选择需要的四列并转换为长格式
data_long <- data %>%rstatix::select(goRT_uni_gocorrect, goRT_i_clgocorrect, goRT_i_crgocorrect, goRT_onlygocorrect) %>%pivot_longer(cols = everything(), names_to = "condition", values_to = "RT") %>%mutate(subject = rep(1:(nrow(data)), each = 4)) # 为每个被试添加一个唯一的标识符
# 计算描述性统计
means <- c(mean(data$goRT_uni_gocorrect), mean(data$goRT_i_clgocorrect), mean(data$goRT_i_crgocorrect), mean(data$goRT_onlygocorrect))
sds <- c(sd(data$goRT_uni_gocorrect), sd(data$goRT_i_clgocorrect), sd(data$goRT_i_crgocorrect), sd(data$goRT_onlygocorrect))
ns <- rep(nrow(data), 4)
# 生成结果数据框
result <- data.frame(Condition = c("goRT_uni_gocorrect", "goRT_i_clgocorrect", "goRT_i_crgocorrect", "goRT_onlygocorrect"),Mean = means,SD = sds,N = ns
)# 使用 ezANOVA 进行单因素重复测量方差分析
anova_results <- ezANOVA(data = data_long,dv = RT, # 因变量wid = subject, # 受试者within = condition, # 重复测量因素detailed = TRUE
)
# 成对比较
AOV<-aov(RT ~ condition,data_long) #检验不同时间之间的差异
# 打开文件以写入
sink(output_file)
# 添加自定义文本
cat("###Condition (uni/i_cl/i_cr/onlygo) 的重复测量方差分析###\n\n")
# 描述性结果
cat("Condition\tMean\tSD\tN\n")
for (i in 1:nrow(result)) {cat(paste(result$Condition[i], "\t", round(result$Mean[i], 2), "\t", round(result$SD[i], 2), "\t", result$N[i], "\n"))
}
# 方差分析结果
print(anova_results)
# 事后两两比较结果
TukeyHSD(AOV,p.adjust.methods="bonferroni")
# 关闭文件
sink()
# 保留的变量
keep_vars <- c("data", "file_path", "output_file")
# 获取当前环境中的所有变量
all_vars <- ls()
# 找出需要删除的变量
vars_to_remove <- setdiff(all_vars, keep_vars)
# 删除不需要的变量
rm(list = vars_to_remove)
rm(list = ls())#清空environment
### 加载包
if (!require("tidyverse")) install.packages("tidyverse")
library(tidyverse)#用于数据清理、操作、可视化和分析
if (!require("conflicted")) install.packages("conflicted")
library(conflicted)#让 R 遇到冲突时抛出错误,并让您明确选择要调用的函数
library(readxl)
library(ez)### 读取数据
file_path <- "D:/LLYdata/EEG_EMG_expdata/behavior/result/MATLAB/analysis_data.xlsx"
data <- read_excel(file_path, range = cell_rows(1:25))#读取excel的第1到25行的所有列
# 设置结果输出文件路径
output_file <- "D:/LLYdata/EEG_EMG_expdata/behavior/result/R/results.txt"################################################################
###go RT: Condition (uni/i_cl/i_cr/onlygo) 的重复测量方差分析###
################################################################
# 计算描述性统计
means <- c(mean(data$goRT_uni_gocorrect), mean(data$goRT_i_clgocorrect), mean(data$goRT_i_crgocorrect), mean(data$goRT_onlygocorrect))
sds <- c(sd(data$goRT_uni_gocorrect), sd(data$goRT_i_clgocorrect), sd(data$goRT_i_crgocorrect), sd(data$goRT_onlygocorrect))
ns <- rep(nrow(data), 4)
# 生成结果数据框
result <- data.frame(Condition = c("goRT_uni_gocorrect", "goRT_i_clgocorrect", "goRT_i_crgocorrect", "goRT_onlygocorrect"),Mean = means,SD = sds,N = ns
)# 选择需要的四列并转换为长格式
data_long <- data %>%rstatix::select(goRT_uni_gocorrect, goRT_i_clgocorrect, goRT_i_crgocorrect, goRT_onlygocorrect) %>%pivot_longer(cols = everything(), names_to = "condition", values_to = "RT") %>%mutate(subject = rep(1:(nrow(data)), each = 4)) # 为每个被试添加一个唯一的标识符# 使用 ezANOVA 进行单因素重复测量方差分析
anova_results <- ezANOVA(data = data_long,dv = RT, # 因变量wid = subject, # 受试者within = condition, # 重复测量因素detailed = TRUE
)
# 成对比较
AOV<-aov(RT ~ condition,data_long) #检验不同时间之间的差异# 打开文件以写入
sink(output_file)
# 添加自定义文本
cat("###Condition (uni/i_cl/i_cr/onlygo) 的重复测量方差分析###\n\n")
# 描述性结果
cat("Condition\tMean\tSD\tN\n")
for (i in 1:nrow(result)) {cat(paste(result$Condition[i], "\t", round(result$Mean[i], 2), "\t", round(result$SD[i], 2), "\t", result$N[i], "\n"))
}
# 方差分析结果
print(anova_results)
# 事后两两比较结果
TukeyHSD(AOV,p.adjust.methods="bonferroni")
# 关闭文件
sink()
相关文章:
R学习笔记-单因素重复测量方差分析
R语言之重复测量方差分析——ezANOVA的使用与解析 - 知乎 单因素重复测量方差分析(One-Way Repeated Measures ANOVA)——R软件实现 - 梦特医数通 ### 清空environment rm(list ls()) ### 加载包 if (!require("tidyverse")) install.packages("tidyverse&quo…...
HTML练习题:彼岸的花(web)
展示效果: 代码: <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>彼岸の花</title><style…...
(蓝桥杯C/C++)——常用库函数
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 目录 一、 二分查找 1.二分查找的前提 2.binary_ search函数 3.lower_bound和upper_bound 二、排序 1.sort概念 2.sort的用法 3.自定义比较函数 三、全排列 1.next p…...
GPT-Sovits-2-微调模型
1. 大致步骤 上一步整理完数据集后,此步输入数据, 微调2个模型VITS和GPT,位置在 <<1-GPT-SoVITS-tts>>下的<<1B-微调训练>> 页面的两个按钮分别执行两个文件: <./GPT_SoVITS/s2_train.py> 这一步微调VITS的预训练模型…...
【数据结构 | PTA】懂蛇语
懂蛇语 在《一年一度喜剧大赛》第二季中有一部作品叫《警察和我之蛇我其谁》,其中“毒蛇帮”内部用了一种加密语言,称为“蛇语”。蛇语的规则是,在说一句话 A 时,首先提取 A 的每个字的首字母,然后把整句话替换为另一…...
Python——自动化发送邮件
在数字化时代,电子邮件是商务沟通和个人联络的重要工具。自动化邮件发送可以节省时间,提高效率。Python,作为一种强大且灵活的编程语言,提供了多种库来支持邮件的自动化发送。本文将详细介绍如何使用Python的smtplib和email库来编…...
MTKLauncher_布局页面分析
文章目录 前言遇到的困难点针对性解决困难 需求相关资料Launcher3 源码 目录简单介绍Launcher3 简介及页面布局分析UI整体架构数据加载布局加载布局加载核心思想device_profiles.xml 加载InvariantDeviceProfileinitGrid(context, gridName)getPredefinedDeviceProfilesinvDist…...
C#实现隐藏和显示任务栏
实现步骤 为了能够控制Windows任务栏,我们需要利用Windows API提供的功能。具体来说,我们会使用到user32.dll中的两个函数:FindWindow和ShowWindow。这两个函数可以帮助我们找到任务栏窗口,并对其执行显示或隐藏的操作 引入命名空…...
基于springboot+vue实现的公司财务管理系统(源码+L文+ppt)4-102
基于springbootvue实现的公司财务管理系统(源码L文ppt)4-102 摘要 本系统是基于SpringBoot框架开发的公司财务管理系统,该系统包含固定资产管理、资产申领管理、资产采购管理、员工工资管理等功能。公司财务管理系统是一种帮助公司进行有效资金管理、会…...
rnn/lstm
tip:本人比较小白,看到july大佬的文章受益匪浅,现在其文章基础上加上自己的归纳、理解,以及gpt的答疑,如果有侵权会删。 july大佬文章来源:如何从RNN起步,一步一步通俗理解LSTM_rnn lstm-CSDN博…...
袋鼠云产品功能更新报告12期|让数据资产管理更高效
本期,我们更新和优化了数据资产平台相关功能,为您提供更高效的产品能力。以下为第12期袋鼠云产品功能更新报告,请继续阅读。 一、【元数据】重点更新 |01 元数据管理优化,支持配置表生命周期 之前系统中缺少一个可以…...
MATLAB——入门知识
内容源于b站清风数学建模 目录 1.帮助文档 2.注释 3.特殊字符 4.设置MATLAB数值显示格式 4.1.临时更改 4.2.永久改 5.常用函数 6.易错点 1.帮助文档 doc sum help sum edit sum 2.注释 ctrl R/T 3.特殊字符 4.设置MATLAB数值显示格式 4.1.临时更改 format lon…...
C#从零开始学习(用户界面)(unity Lab4)
这是书本中第四个unity Lab 在这次实验中,将学习如何搭建一个开始界面 分数系统 点击球,会增加分数 public void ClickOnBall(){Score;}在OneBallBehaviour类添加下列方法 void OnMouseDown(){GameController controller Camera.main.GetComponent<GameController>();…...
Axure PR 9 多级下拉清除选择器 设计交互
大家好,我是大明同学。 Axure选择器是一种在交互设计中常用的组件,这期内容,我们来探讨Axure中选择器设计与交互技巧。 OK,这期内容正式开始 下拉列表选择输入框元件 创建选择输入框所需的元件 1.在元件库中拖出一个矩形元件。…...
分布式项目pom配置
1. 父项目打包方式为 pom <packaging>pom</packaging> 2. 父项目版本配置 <properties><maven.compiler.source>17</maven.compiler.source><maven.compiler.target>17</maven.compiler.target><project.build.sourceEncod…...
2. Flink快速上手
文章目录 1. 环境准备1.1 系统环境1.2 安装配置Java 8和Scala 2.121.3 使用集成开发环境IntelliJ IDEA1.4 安装插件2. 创建项目2.1 创建工程2.1.1 创建Maven项目2.1.2 设置项目基本信息2.1.3 生成项目基本框架2.2 添加项目依赖2.2.1 添加Flink相关依赖2.2.2 添加slf4j-nop依赖2…...
Java-I/O框架06:常见字符编码、字符流抽象类
视频链接:16.16 字符流抽象类_哔哩哔哩_bilibilihttps://www.bilibili.com/video/BV1Tz4y1X7H7?spm_id_from333.788.videopod.episodes&vd_sourceb5775c3a4ea16a5306db9c7c1c1486b5&p16 1.常见字符编码 IOS-8859-1收录了除ASCII外,还包括西欧…...
计算机网络-MSTP的基础概念
前面我们大致了解了MSTP的由来,是为了解决STP/RSTP只有一根生成树导致的VLAN流量负载分担与次优路径问题,了解MSTP采用实例映射VLAN的方式实现多实例生成树,MSTP有很多的理论概念需要知道,其实与其它的知识一样理论复杂配置还好的…...
P1037 [NOIP2002 普及组] 产生数
[NOIP2002 普及组] 产生数 题目描述 给出一个整数 n n n 和 k k k 个变换规则。 规则: 一位数可变换成另一个一位数。规则的右部不能为零。 例如: n 234 , k 2 n234,k2 n234,k2。有以下两个规则: 2 ⟶ 5 2\longrightarrow 5 2⟶5。 …...
【分布式知识】分布式对象存储组件-Minio
文章目录 什么是minio核心特点:使用场景:开发者工具:社区和支持: 核心概念什么是对象存储?MinIO 如何确定对对象的访问权限?我可以在存储桶内按文件夹结构组织对象吗?如何备份和恢复 MinIO 上的…...
超短脉冲激光自聚焦效应
前言与目录 强激光引起自聚焦效应机理 超短脉冲激光在脆性材料内部加工时引起的自聚焦效应,这是一种非线性光学现象,主要涉及光学克尔效应和材料的非线性光学特性。 自聚焦效应可以产生局部的强光场,对材料产生非线性响应,可能…...
阿里云ACP云计算备考笔记 (5)——弹性伸缩
目录 第一章 概述 第二章 弹性伸缩简介 1、弹性伸缩 2、垂直伸缩 3、优势 4、应用场景 ① 无规律的业务量波动 ② 有规律的业务量波动 ③ 无明显业务量波动 ④ 混合型业务 ⑤ 消息通知 ⑥ 生命周期挂钩 ⑦ 自定义方式 ⑧ 滚的升级 5、使用限制 第三章 主要定义 …...
【JavaSE】绘图与事件入门学习笔记
-Java绘图坐标体系 坐标体系-介绍 坐标原点位于左上角,以像素为单位。 在Java坐标系中,第一个是x坐标,表示当前位置为水平方向,距离坐标原点x个像素;第二个是y坐标,表示当前位置为垂直方向,距离坐标原点y个像素。 坐标体系-像素 …...
用docker来安装部署freeswitch记录
今天刚才测试一个callcenter的项目,所以尝试安装freeswitch 1、使用轩辕镜像 - 中国开发者首选的专业 Docker 镜像加速服务平台 编辑下面/etc/docker/daemon.json文件为 {"registry-mirrors": ["https://docker.xuanyuan.me"] }同时可以进入轩…...
GC1808高性能24位立体声音频ADC芯片解析
1. 芯片概述 GC1808是一款24位立体声音频模数转换器(ADC),支持8kHz~96kHz采样率,集成Δ-Σ调制器、数字抗混叠滤波器和高通滤波器,适用于高保真音频采集场景。 2. 核心特性 高精度:24位分辨率,…...
人机融合智能 | “人智交互”跨学科新领域
本文系统地提出基于“以人为中心AI(HCAI)”理念的人-人工智能交互(人智交互)这一跨学科新领域及框架,定义人智交互领域的理念、基本理论和关键问题、方法、开发流程和参与团队等,阐述提出人智交互新领域的意义。然后,提出人智交互研究的三种新范式取向以及它们的意义。最后,总结…...
【无标题】路径问题的革命性重构:基于二维拓扑收缩色动力学模型的零点隧穿理论
路径问题的革命性重构:基于二维拓扑收缩色动力学模型的零点隧穿理论 一、传统路径模型的根本缺陷 在经典正方形路径问题中(图1): mermaid graph LR A((A)) --- B((B)) B --- C((C)) C --- D((D)) D --- A A -.- C[无直接路径] B -…...
Git常用命令完全指南:从入门到精通
Git常用命令完全指南:从入门到精通 一、基础配置命令 1. 用户信息配置 # 设置全局用户名 git config --global user.name "你的名字"# 设置全局邮箱 git config --global user.email "你的邮箱example.com"# 查看所有配置 git config --list…...
Kubernetes 网络模型深度解析:Pod IP 与 Service 的负载均衡机制,Service到底是什么?
Pod IP 的本质与特性 Pod IP 的定位 纯端点地址:Pod IP 是分配给 Pod 网络命名空间的真实 IP 地址(如 10.244.1.2)无特殊名称:在 Kubernetes 中,它通常被称为 “Pod IP” 或 “容器 IP”生命周期:与 Pod …...
规则与人性的天平——由高考迟到事件引发的思考
当那位身着校服的考生在考场关闭1分钟后狂奔而至,他涨红的脸上写满绝望。铁门内秒针划过的弧度,成为改变人生的残酷抛物线。家长声嘶力竭的哀求与考务人员机械的"这是规定",构成当代中国教育最尖锐的隐喻。 一、刚性规则的必要性 …...
