Java集合常见面试题总结(5)
HashSet 如何检查重复?
当你把对象加入HashSet时,HashSet 会先计算对象的hashcode值来判断对象加入的位置,同时也会与其他加入的对象的 hashcode 值作比较,如果没有相符的 hashcode,HashSet 会假设对象没有重复出现。但是如果发现有相同 hashcode 值的对象,这时会调用equals()方法来检查 hashcode 相等的对象是否真的相同。如果两者相同,HashSet 就不会让加入操作成功。
在 JDK1.8 中,HashSet的add()方法只是简单的调用了HashMap的put()方法,并且判断了一下返回值以确保是否有重复元素。直接看一下HashSet中的源码:
// Returns: true if this set did not already contain the specified element
// 返回值:当 set 中没有包含 add 的元素时返回真
public boolean add(E e) {return map.put(e, PRESENT)==null;
}
而在HashMap的putVal()方法中也能看到如下说明:
// Returns : previous value, or null if none
// 返回值:如果插入位置没有元素返回null,否则返回上一个元素
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,boolean evict) {
...
}
也就是说,在 JDK1.8 中,实际上无论HashSet中是否已经存在了某元素,HashSet都会直接插入,只是会在add()方法的返回值处告诉我们插入前是否存在相同元素。
HashMap 的底层实现
JDK1.8 之前
JDK1.8 之前 HashMap 底层是 数组和链表 结合在一起使用也就是 链表散列。HashMap 通过 key 的 hashcode 经过扰动函数处理过后得到 hash 值,然后通过 (n - 1) & hash 判断当前元素存放的位置(这里的 n 指的是数组的长度),如果当前位置存在元素的话,就判断该元素与要存入的元素的 hash 值以及 key 是否相同,如果相同的话,直接覆盖,不相同就通过拉链法解决冲突。
HashMap 中的扰动函数(hash 方法)是用来优化哈希值的分布。通过对原始的 hashCode() 进行额外处理,扰动函数可以减小由于糟糕的 hashCode() 实现导致的碰撞,从而提高数据的分布均匀性。
JDK 1.8 HashMap 的 hash 方法源码:
JDK 1.8 的 hash 方法 相比于 JDK 1.7 hash 方法更加简化,但是原理不变。
static final int hash(Object key) {int h;// key.hashCode():返回散列值也就是hashcode// ^:按位异或// >>>:无符号右移,忽略符号位,空位都以0补齐return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);}
对比一下 JDK1.7 的 HashMap 的 hash 方法源码.
static int hash(int h) {// This function ensures that hashCodes that differ only by// constant multiples at each bit position have a bounded// number of collisions (approximately 8 at default load factor).h ^= (h >>> 20) ^ (h >>> 12);return h ^ (h >>> 7) ^ (h >>> 4);
}
相比于 JDK1.8 的 hash 方法 ,JDK 1.7 的 hash 方法的性能会稍差一点点,因为毕竟扰动了 4 次。
所谓 “拉链法” 就是:将链表和数组相结合。也就是说创建一个链表数组,数组中每一格就是一个链表。若遇到哈希冲突,则将冲突的值加到链表中即可。

JDK1.8 之后
相比于之前的版本, JDK1.8 之后在解决哈希冲突时有了较大的变化,当链表长度大于阈值(默认为 8)(将链表转换成红黑树前会判断,如果当前数组的长度小于 64,那么会选择先进行数组扩容,而不是转换为红黑树)时,将链表转化为红黑树,以减少搜索时间。

TreeMap、TreeSet 以及 JDK1.8 之后的 HashMap 底层都用到了红黑树。红黑树就是为了解决二叉查找树的缺陷,因为二叉查找树在某些情况下会退化成一个线性结构。
我们来结合源码分析一下 HashMap 链表到红黑树的转换。
1、 putVal 方法中执行链表转红黑树的判断逻辑。
链表的长度大于 8 的时候,就执行 treeifyBin (转换红黑树)的逻辑。
// 遍历链表
for (int binCount = 0; ; ++binCount) {// 遍历到链表最后一个节点if ((e = p.next) == null) {p.next = newNode(hash, key, value, null);// 如果链表元素个数大于TREEIFY_THRESHOLD(8)if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st// 红黑树转换(并不会直接转换成红黑树)treeifyBin(tab, hash);break;}if (e.hash == hash &&((k = e.key) == key || (key != null && key.equals(k))))break;p = e;
}
2、treeifyBin 方法中判断是否真的转换为红黑树。
final void treeifyBin(Node<K,V>[] tab, int hash) {int n, index; Node<K,V> e;// 判断当前数组的长度是否小于 64if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY)// 如果当前数组的长度小于 64,那么会选择先进行数组扩容resize();else if ((e = tab[index = (n - 1) & hash]) != null) {// 否则才将列表转换为红黑树TreeNode<K,V> hd = null, tl = null;do {TreeNode<K,V> p = replacementTreeNode(e, null);if (tl == null)hd = p;else {p.prev = tl;tl.next = p;}tl = p;} while ((e = e.next) != null);if ((tab[index] = hd) != null)hd.treeify(tab);}
}
将链表转换成红黑树前会判断,如果当前数组的长度小于 64,那么会选择先进行数组扩容,而不是转换为红黑树。
相关文章:
Java集合常见面试题总结(5)
HashSet 如何检查重复? 当你把对象加入HashSet时,HashSet 会先计算对象的hashcode值来判断对象加入的位置,同时也会与其他加入的对象的 hashcode 值作比较,如果没有相符的 hashcode,HashSet 会假设对象没有重复出现。但是如果发…...
牛客网刷题(3)(Java的几种常用包)
目录 一、牛客网案例题目。 二、Java常用包的总结。 <1>JAVA常用包(图片)。 <2>java.lang包。 <3>java.util包。 (1)集合框架。 1、Collection接口。 2、List接口。 3、Set接口。 4、Queue接口。 5、Map接口。 …...
PyTorch nn.Conv2d 空洞卷积
torch.nn.Conv2d() 中 dilation 参数控制卷积核的间隔 dilation controls the spacing between the kernel points 当 dilation1 时, 表示卷积核没有额外的空白间距, 也就是标准卷积当 dilation>1 时, 表示空洞卷积(dilated convolution) 动画演示: 手动计算 以 2*2 的卷…...
像素、分辨率、PPI(像素密度)、帧率的概念
文章目录 前言一、像素1、定义2、像素点也不是越多越好 二、分辨率1、定义 三、PPI(像素密度)1、定义2、计算公式3、视网膜屏幕 四、帧率1、帧 (Frame)2、帧数 (Frames)3、帧率 (Frame Rate)4、FPS (Frames Per Second)5、赫兹 五、其他1、英寸2、为何显示器尺寸以英寸命名 总结…...
两步GMM计算权重矩阵
在广义矩方法(GMM)中,权重矩阵(W)的选择是关键的一步。理想情况下,(W)应该等于矩条件的协方差矩阵的逆矩阵。这是因为使用这样的权重矩阵可以使得估计量达到最小方差,从而提高估计效率。 两步GMM计算权重矩阵(W) 第一…...
leetcode452. 用最少数量的箭引爆气球
有一些球形气球贴在一堵用 XY 平面表示的墙面上。墙面上的气球记录在整数数组 points ,其中points[i] [xstart, xend] 表示水平直径在 xstart 和 xend之间的气球。你不知道气球的确切 y 坐标。 一支弓箭可以沿着 x 轴从不同点 完全垂直 地射出。在坐标 x 处射出一…...
【Android】使用TextView实现按钮开关代替Switch开关
介绍 Android 本身自己带的有开关控件,但是很多时候我们是不愿意使用这种开关的,感觉使用起来比较麻烦,特别是遇到需要延迟操作的情况。 比如有一个需求是这样的:我们需要打开一个设置,但是这个设置是否打开需要经过…...
(49)MATLAB实现迫零均衡器原理与代码
文章目录 前言一、迫零均衡器设计说明二、迫零均衡器MATLAB源代码1.函数说明2.代码实现3.辅助函数 前言 使用MATLAB实现迫零均衡器。给出完整的MATLAB设计源代码。 一、迫零均衡器设计说明 理想的迫零均衡器有无限多个抽头权系数,是不能实现的,本文考虑…...
滚柱导轨出现异常损坏的原因
滚柱导轨是一种精密的直线滚动导轨,具有较高的承载能力和较高的刚性,对反复动作、起动、停止往复运动频率较高情况下可减少整机重量和传动机构及动力成本。滚柱导轨可获得较高的灵敏度和高性能的平面直线运动,在重载或变载的情况下࿰…...
架构师考试系列(6)论文专题:论分布式架构设计
论分布式架构设计 摘要: 2020年2月,我司中标了某省电力公司的配网运维管控项目,该项目接入电力公司营销、设备和调度等多个部门的专业数据,为配网运行、配网检修、配网抢修、配网工程、供电服务等核心业务提供数据支撑。由于本项目是省级项目,系统可靠性、可用性要求比较…...
leetcode hot100【LeetCode 230. 二叉搜索树中第K小的元素】java实现
LeetCode 230. 二叉搜索树中第K小的元素 题目描述 给定一个二叉搜索树的根节点 root,和一个整数 k,请你找出其中第 k 小的节点。 注意: 题目保证 k 的有效性。 示例: 给定二叉搜索树: 5/ \3 7/ \ \ 2 4 …...
从0开始深度学习(23)——图像卷积
上节了解了卷积层的原理,本节以图像为例,介绍一下它的实际应用 1 互相关运算 严格来说,卷积层是个错误的叫法,因为它所表达的运算其实是互相关运算(cross-correlation)。 首先,我们暂时忽略通…...
编程小白如何成为大神
成为编程大神的过程需要时间、耐心和实践。以下是一些适合大学新生的入门攻略: 1. 确定学习目标 选择语言:选择一门编程语言作为起点,如 Python、Java 或 JavaScript。Python 是初学者的热门选择,因为其语法简洁易懂。设定目标&…...
JetCache启动循环依赖分析
问题呈现 项目性能优化,需要将本地内存(JVM内存)替换为本地Redis(同一个Pod中的Container),降低JVM内存和GC的压力,同时引入了JetCache简化和统一使用(对JetCache也做了扩展&#x…...
【科研绘图】3DMAX管状图表生成插件TubeChart使用方法
3DMAX管状图表生成插件TubeChart,一款用于制作3D管状图表的工具。可以自定义切片的数量以及随机或指定切片颜色。 【版本要求】 3dMax 2008及更高版本 【安装方法】 TubeChart插件无需安装,使用时直接拖动插件脚本文件到3dMax视口中打开即可࿰…...
基于SSM土家风景文化管理系统的设计
管理员账户功能包括:系统首页,个人中心,用户管理,景点分类管理,热门景点管理,门票订单管理,旅游线路管理,系统管理 前提账号功能包括:系统首页,个人中心&…...
C++超强图片预览器
下载 文件打开关联 关键代码 uint32_t getSrcPx3(const cv::Mat& srcImg, int srcX, int srcY, int mainX, int mainY) const {cv::Vec3b srcPx = srcImg.at<cv::Vec3b>(srcY, srcX);intUnion ret = 255;if (curPar.zoomCur < curPar.ZOOM_BASE && src…...
网络搜索引擎Shodan(2)
声明:学习视频来自b站up主 泷羽sec,如涉及侵权马上删除文章 声明:本文主要用作技术分享,所有内容仅供参考。任何使用或依赖于本文信息所造成的法律后果均与本人无关。请读者自行判断风险,并遵循相关法律法规。 感谢泷…...
【Tableau】
Tableau 是一款强大且广泛使用的数据可视化和商业智能(BI)工具,用于帮助用户分析、探索和呈现数据。它通过直观的拖放界面,允许用户轻松创建动态仪表板和报告,而无需编写代码。Tableau 可处理多种数据源,如…...
分类与有序回归
分类问题 分类问题,例如分类猫、狗、猪时,使用数字进行表示为1,2,3。而1、2、3之间有大小,分类算法为了平衡标签之间的差异,使得损失公平,会使用one-hot编码。例如,分别使用&#x…...
【大模型RAG】拍照搜题技术架构速览:三层管道、两级检索、兜底大模型
摘要 拍照搜题系统采用“三层管道(多模态 OCR → 语义检索 → 答案渲染)、两级检索(倒排 BM25 向量 HNSW)并以大语言模型兜底”的整体框架: 多模态 OCR 层 将题目图片经过超分、去噪、倾斜校正后,分别用…...
OpenLayers 可视化之热力图
注:当前使用的是 ol 5.3.0 版本,天地图使用的key请到天地图官网申请,并替换为自己的key 热力图(Heatmap)又叫热点图,是一种通过特殊高亮显示事物密度分布、变化趋势的数据可视化技术。采用颜色的深浅来显示…...
Java - Mysql数据类型对应
Mysql数据类型java数据类型备注整型INT/INTEGERint / java.lang.Integer–BIGINTlong/java.lang.Long–––浮点型FLOATfloat/java.lang.FloatDOUBLEdouble/java.lang.Double–DECIMAL/NUMERICjava.math.BigDecimal字符串型CHARjava.lang.String固定长度字符串VARCHARjava.lang…...
AI编程--插件对比分析:CodeRider、GitHub Copilot及其他
AI编程插件对比分析:CodeRider、GitHub Copilot及其他 随着人工智能技术的快速发展,AI编程插件已成为提升开发者生产力的重要工具。CodeRider和GitHub Copilot作为市场上的领先者,分别以其独特的特性和生态系统吸引了大量开发者。本文将从功…...
Unit 1 深度强化学习简介
Deep RL Course ——Unit 1 Introduction 从理论和实践层面深入学习深度强化学习。学会使用知名的深度强化学习库,例如 Stable Baselines3、RL Baselines3 Zoo、Sample Factory 和 CleanRL。在独特的环境中训练智能体,比如 SnowballFight、Huggy the Do…...
深入解析C++中的extern关键字:跨文件共享变量与函数的终极指南
🚀 C extern 关键字深度解析:跨文件编程的终极指南 📅 更新时间:2025年6月5日 🏷️ 标签:C | extern关键字 | 多文件编程 | 链接与声明 | 现代C 文章目录 前言🔥一、extern 是什么?&…...
VM虚拟机网络配置(ubuntu24桥接模式):配置静态IP
编辑-虚拟网络编辑器-更改设置 选择桥接模式,然后找到相应的网卡(可以查看自己本机的网络连接) windows连接的网络点击查看属性 编辑虚拟机设置更改网络配置,选择刚才配置的桥接模式 静态ip设置: 我用的ubuntu24桌…...
[免费]微信小程序问卷调查系统(SpringBoot后端+Vue管理端)【论文+源码+SQL脚本】
大家好,我是java1234_小锋老师,看到一个不错的微信小程序问卷调查系统(SpringBoot后端Vue管理端)【论文源码SQL脚本】,分享下哈。 项目视频演示 【免费】微信小程序问卷调查系统(SpringBoot后端Vue管理端) Java毕业设计_哔哩哔哩_bilibili 项…...
快刀集(1): 一刀斩断视频片头广告
一刀流:用一个简单脚本,秒杀视频片头广告,还你清爽观影体验。 1. 引子 作为一个爱生活、爱学习、爱收藏高清资源的老码农,平时写代码之余看看电影、补补片,是再正常不过的事。 电影嘛,要沉浸,…...
在 Spring Boot 项目里,MYSQL中json类型字段使用
前言: 因为程序特殊需求导致,需要mysql数据库存储json类型数据,因此记录一下使用流程 1.java实体中新增字段 private List<User> users 2.增加mybatis-plus注解 TableField(typeHandler FastjsonTypeHandler.class) private Lis…...
