Pandas 数据可视化指南:从散点图到面积图的全面展示
Pandas 数据可视化指南:从散点图到面积图的全面展示
本文介绍了使用 Pandas 进行数据可视化的多种方法,包括散点图、折线图、条形图、直方图、饼图和面积图等,涵盖了常见的图表类型及其实现方式。通过提供详细的代码示例,展示了如何使用 Pandas 和 Matplotlib 快速创建不同类型的图表,帮助读者轻松掌握数据可视化技术。这篇指南既适合初学者,也为有经验的开发者提供了一些实用技巧,帮助在数据分析中更直观地展示结果。
文章目录
- Pandas 数据可视化指南:从散点图到面积图的全面展示
- 一 散点图(Scatter)
- 二 折线图(Plot)
- 简单折线图
- 多折线图
- 三 条形图(Bar)
- 垂直条形图
- 堆叠条形图
- 水平条形图
- 四 直方图(Hist)
- 简单直方图
- 重叠直方图
- 五 饼图(Pie)
- 简单饼图
- 多个饼图
- 六 面积图(Area)
- 堆叠面积图
- 同起点面积图
- 七 完整代码示例
- 八 源码地址
导入库
在开始绘制图表之前,我们首先导入必要的库
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
一 散点图(Scatter)

n = 1024 # 数据量
# 创建数据框
df = pd.DataFrame({"x": np.random.normal(0, 1, n),"y": np.random.normal(0, 1, n),
})
# 使用 arctan2 函数计算颜色
color = np.arctan2(df["y"], df["x"])
# 绘制散点图
df.plot.scatter(x="x", y="y", c=color, s=60, alpha=0.5, cmap="rainbow")
二 折线图(Plot)
简单折线图

n = 20 # 数据量
x = np.linspace(-1, 1, n)
y = x * 2 + 0.4 + np.random.normal(0, 0.3, n)
# 创建数据框
df = pd.DataFrame({"x": x,"y": y,
})
# 绘制折线图
df.plot(x="x", y="y", alpha=0.5, c="r")
多折线图

n = 20 # 数据量
x = np.linspace(-1, 1, n)
y1 = x * -1 - 0.1 + np.random.normal(0, 0.3, n)
y2 = x * 2 + 0.4 + np.random.normal(0, 0.3, n)
# 创建数据框
df = pd.DataFrame({"x": x,"y1": y1,"y2": y2,
})
# 绘制多折线图
df.plot(x="x", y=["y1", "y2"], alpha=0.5)
三 条形图(Bar)
垂直条形图

df = pd.DataFrame(np.random.rand(5, 3), columns=["a", "b", "c"])df.plot.bar()
堆叠条形图

df = pd.DataFrame(np.random.rand(5, 3), columns=["a", "b", "c"])df.plot.bar(stacked=True)
水平条形图

df = pd.DataFrame(np.random.rand(5, 3), columns=["a", "b", "c"])df.plot.barh()
四 直方图(Hist)
简单直方图

df = pd.DataFrame({"a": np.random.randn(1000)})
df.plot.hist()
重叠直方图

df = pd.DataFrame({"a": np.random.randn(1000) + 1,"b": np.random.randn(1000),"c": np.random.randn(1000) - 4,}
)df.plot.hist(alpha=0.5, bins=30)
五 饼图(Pie)
简单饼图

df = pd.DataFrame({"boss": np.random.rand(4)},index=["meeting", "supervise", "teaching", "team building"],)df.plot.pie(y="boss", figsize=(7, 7))
多个饼图

df = pd.DataFrame({"bigBoss": np.random.rand(4),"smallBoss": np.random.rand(4),},index=["meeting", "supervise", "teaching", "team building"],
)
df.plot.pie(subplots=True, figsize=(9, 9), legend=False)
六 面积图(Area)
堆叠面积图

#
df = pd.DataFrame(np.random.rand(10, 4),columns=["a", "b", "c", "d"]
)
df.plot.area()
同起点面积图

#
df = pd.DataFrame(np.random.rand(10, 4),columns=["a", "b", "c", "d"]
)
df.plot.area(stacked=False)
详情见官方文档:Pandas 可视化图表
七 完整代码示例
# This is a sample Python script.# Press ⌃R to execute it or replace it with your code.
# Press Double ⇧ to search everywhere for classes, files, tool windows, actions, and settings.
import numpy as np
import pandas as pd
import matplotlib.pyplot as pltdef print_hi(name):# Use a breakpoint in the code line below to debug your script.print(f'Hi, {name}') # Press ⌘F8 to toggle the breakpoint.# 散点图Scattern = 1024 # data sizedf = pd.DataFrame({"x": np.random.normal(0, 1, n),"y": np.random.normal(0, 1, n),})color = np.arctan2(df["y"], df["x"])df.plot.scatter(x="x", y="y", c=color, s=60, alpha=.5, cmap="rainbow")# 折线图Plotn = 20 # data sizex = np.linspace(-1, 1, n)y = x * 2 + 0.4 + np.random.normal(0, 0.3, n)df = pd.DataFrame({"x": x,"y": y,})df.plot(x="x", y="y", alpha=.5, c="r")n = 20 # data sizex = np.linspace(-1, 1, n)y1 = x * -1 - 0.1 + np.random.normal(0, 0.3, n)y2 = x * 2 + 0.4 + np.random.normal(0, 0.3, n)df = pd.DataFrame({"x": x,"y1": y1,"y2": y2,})df.plot(x="x", y=["y1", "y2"], alpha=.5)# 条形图Bardf = pd.DataFrame(np.random.rand(5, 3), columns=["a", "b", "c"])df.plot.bar()df.plot.bar(stacked=True)df.plot.barh()# 分布图Histdf = pd.DataFrame({"a": np.random.randn(1000)})df.plot.hist()df = pd.DataFrame({"a": np.random.randn(1000) + 1,"b": np.random.randn(1000),"c": np.random.randn(1000) - 4,})df.plot.hist(alpha=0.5, bins=30)# 饼图Piedf = pd.DataFrame({"boss": np.random.rand(4)},index=["meeting", "supervise", "teaching", "team building"],)df.plot.pie(y="boss", figsize=(7, 7))df = pd.DataFrame({"bigBoss": np.random.rand(4),"smallBoss": np.random.rand(4),},index=["meeting", "supervise", "teaching", "team building"],)df.plot.pie(subplots=True, figsize=(9, 9), legend=False)# 面积图Areadf = pd.DataFrame(np.random.rand(10, 4),columns=["a", "b", "c", "d"])df.plot.area()plt.show()df.plot.area(stacked=False)plt.show()# https://pandas.pydata.org/pandas-docs/stable/user_guide/visualization.html# Press the green button in the gutter to run the script.
if __name__ == '__main__':print_hi('绘制图表')# See PyCharm help at https://www.jetbrains.com/help/pycharm/
复制粘贴并覆盖到你的 main.py 中运行,运行结果如下。
Hi, 绘制图表
八 源码地址
代码地址:
国内看 Gitee 之 pandas/绘制图表.py
国外看 GitHub 之 pandas/绘制图表.py
引用 莫烦 Python
相关文章:
Pandas 数据可视化指南:从散点图到面积图的全面展示
Pandas 数据可视化指南:从散点图到面积图的全面展示 本文介绍了使用 Pandas 进行数据可视化的多种方法,包括散点图、折线图、条形图、直方图、饼图和面积图等,涵盖了常见的图表类型及其实现方式。通过提供详细的代码示例,展示了如…...
Flink + Kafka 实现通用流式数据处理详解
Flink Kafka 实现通用流式数据处理详解 在大数据时代,实时数据处理和分析成为企业快速响应市场变化、提高业务效率和优化决策的关键技术。Apache Flink和Apache Kafka作为两个重要的开源项目,在数据流处理领域具有广泛的应用。本文将深入探讨Flink和Ka…...
Docker常用命令汇总
一、Docker基础命令 启动docker:systemctl start docker关闭docker:systemctl stop docker重启docker:systemctl restart dockerdocker设置随服务启动而自启动:systemctl enable docker查看docker 运行状态:systemctl…...
【Java笔记】0-为什么学习Java
呃,当然是为了找个Java的开发工作 当然是由于Java使用的人多和它天生自带的优点了~ 主要优点有以下几点: 简单性 C语法纯净版,没有头文件、指针运算、不用分配内存 面向对象 重点放在对象与其接口上,接近人的逻辑 可移植性 …...
海外云手机是什么?对外贸电商有什么帮助?
在外贸电商领域,流量引流已成为卖家们关注的核心问题。越来越多的卖家开始利用海外云手机,通过TikTok等社交平台吸引流量,以推动商品在海外市场的销售。那么,海外云手机到底是什么?它又能为外贸电商卖家提供哪些支持呢…...
【找到了】有人知道怎么在本地用记事本方式打开Linux文本文件吗?
就类似这种,我输入一个什么命令打开文件,就能在命令窗口上弹出一个编辑器来编辑文件。只记得好像有参数-e啥的。 命令行里面如何打开文本编辑器? () 在linux命令行terminal上使用gedit直接就可以打开文本文件 那么在…...
docker 安装postgresql
前提:准备好postgresql镜像,如:镜像地址/postgres:15.8 使用docker安装posgresql: 1.docker pull 镜像地址/postgres:15.8 2.docker run -d --namepostgres -p 5432:5432 -v postgres-volume:/var/lib/postgresql/data -e PO…...
2004至2023中国分省统计面板数据-最新出炉_附下载链接
中国各省绿色税收相关数据(2007-2022年)概述 下载链接-点它👉👉👉:中国分省统计面板数据(2004-2023)-最新出炉.zip 资源介绍 绿色税收主要是指以保护环境、合理开发利用自然资源、…...
【算法】排序算法总结
文章目录 内排序一、插入排序1.1 直接插入排序1.2 折半插入排序1.3 希尔排序 二、选择排序2.1 简单选择排序2.2 堆排序 三、交换排序3.1 冒泡排序3.2 快速排序Hoare版挖坑法快速排序前后指针法快速排序的非递归 四、归并排序递归版本非递归版本 五、基数排序六、计数排序内排序…...
双11来了,云计算优惠大集合
京东云 2C2G强烈推荐 连接直达...
13. MapReduce自定义OutputFormat
一. OutputFormat简介 OutputFormat是MapReduce输出的基类,所有MapReduce输出都实现了OutputFormat接口,它接收ReduceTask产生的数据,然后将结果按照指定格式输出。 在MapReduce中,如果不指定,默认使用的是TextOutpu…...
Javase——正则表达式
正则表达式的相关使用 public static void main(String[] args) {//校验QQ号 System.out.println("3602222222".matches("[1-9][0-9]{4,}"));// 校验18位身份证号 System.out.println("11050220240830901X".matches("^([0-9]){7,18}…...
云原生文件系统之JuiceFS
JuiceFS 是一个分布式文件系统,专门为云原生环境设计,支持大规模数据存储和处理,特别适用于处理对象存储和大数据应用。JuiceFS 将元数据和数据分离,元数据保存在数据库中,而文件数据则存储在对象存储中,提…...
C++:输入和输出
一 . DEV C的下载和安装 二 . 第一个C程序 三 . 输出流 四 . 初始的数据类型 3.1、整型变量 3.2、双精度浮点数变量 3.3、字符型变量 3.4、字符串变量 3.5、无符号整型变量 五、输入流...
vue的路由的两种模式 hash与history 详细讲解
文章目录 1. Hash 模式工作原理优点缺点使用示例 2. History 模式工作原理优点缺点服务器配置示例使用示例 总结 Vue Router 是 Vue.js 的官方路由管理器,它支持多种路由模式,其中最常用的两种是 hash 模式和 history 模式。下面我们详细讲解这两种模式的…...
【Linux操作系统】进程间通信之匿名管道与命名管道
目录 一、进程间通信的目的:二、进程间通信的种类三、什么是管道四、匿名管道(共同祖先的进程之间)1.匿名管道的使用2.匿名管道举例3.匿名管道的原理4.管道特点5.管道的读写规则1. 当管道内没有数据可读时2.当管道满的时候3.管道端被关闭4.数…...
慢sql优化和Explain解析
要想程序跑的快,sql优化不可懈怠!今日来总结一下常用的慢sql的分析和优化的方法。 1、慢sql的执行分析: 大家都知道分析一个sql语句执行效率的方法是用explain关键词: 举例:sql:select * from test where bussiness_…...
ALIGN_ Tuning Multi-mode Token-level Prompt Alignment across Modalities
文章汇总 当前的问题 目前的工作集中于单模提示发现,即一种模态只有一个提示,这可能不足以代表一个类[17]。这个问题在多模态提示学习中更为严重,因为视觉和文本概念及其对齐都需要推断。此外,仅用全局特征来表示图像和标记是不…...
【Java SE】代码注释
代码注释 注释(comment)是用于说明解释程序的文字,注释的作用在于提高代码的阅读性(可读性)。Java中的注释类型包括3种,分别是: 单行注释多行注释文档注释 ❤️ 单行注释 基本格式ÿ…...
如何在算家云搭建Llama3-Factory(智能对话)
一、Llama3-Factory 简介 当地时间 4 月 18 日,Meta 在官网上宣布公布了旗下最新大模型 Llama 3。目前,Llama 3 已经开放了 80 亿(8B)和 700 亿(70B)两个小参数版本,上下文窗口为 8k。Llama3 是…...
web vue 项目 Docker化部署
Web 项目 Docker 化部署详细教程 目录 Web 项目 Docker 化部署概述Dockerfile 详解 构建阶段生产阶段 构建和运行 Docker 镜像 1. Web 项目 Docker 化部署概述 Docker 化部署的主要步骤分为以下几个阶段: 构建阶段(Build Stage):…...
[2025CVPR]DeepVideo-R1:基于难度感知回归GRPO的视频强化微调框架详解
突破视频大语言模型推理瓶颈,在多个视频基准上实现SOTA性能 一、核心问题与创新亮点 1.1 GRPO在视频任务中的两大挑战 安全措施依赖问题 GRPO使用min和clip函数限制策略更新幅度,导致: 梯度抑制:当新旧策略差异过大时梯度消失收敛困难:策略无法充分优化# 传统GRPO的梯…...
大话软工笔记—需求分析概述
需求分析,就是要对需求调研收集到的资料信息逐个地进行拆分、研究,从大量的不确定“需求”中确定出哪些需求最终要转换为确定的“功能需求”。 需求分析的作用非常重要,后续设计的依据主要来自于需求分析的成果,包括: 项目的目的…...
Java如何权衡是使用无序的数组还是有序的数组
在 Java 中,选择有序数组还是无序数组取决于具体场景的性能需求与操作特点。以下是关键权衡因素及决策指南: ⚖️ 核心权衡维度 维度有序数组无序数组查询性能二分查找 O(log n) ✅线性扫描 O(n) ❌插入/删除需移位维护顺序 O(n) ❌直接操作尾部 O(1) ✅内存开销与无序数组相…...
IGP(Interior Gateway Protocol,内部网关协议)
IGP(Interior Gateway Protocol,内部网关协议) 是一种用于在一个自治系统(AS)内部传递路由信息的路由协议,主要用于在一个组织或机构的内部网络中决定数据包的最佳路径。与用于自治系统之间通信的 EGP&…...
高频面试之3Zookeeper
高频面试之3Zookeeper 文章目录 高频面试之3Zookeeper3.1 常用命令3.2 选举机制3.3 Zookeeper符合法则中哪两个?3.4 Zookeeper脑裂3.5 Zookeeper用来干嘛了 3.1 常用命令 ls、get、create、delete、deleteall3.2 选举机制 半数机制(过半机制࿰…...
Neo4j 集群管理:原理、技术与最佳实践深度解析
Neo4j 的集群技术是其企业级高可用性、可扩展性和容错能力的核心。通过深入分析官方文档,本文将系统阐述其集群管理的核心原理、关键技术、实用技巧和行业最佳实践。 Neo4j 的 Causal Clustering 架构提供了一个强大而灵活的基石,用于构建高可用、可扩展且一致的图数据库服务…...
Axios请求超时重发机制
Axios 超时重新请求实现方案 在 Axios 中实现超时重新请求可以通过以下几种方式: 1. 使用拦截器实现自动重试 import axios from axios;// 创建axios实例 const instance axios.create();// 设置超时时间 instance.defaults.timeout 5000;// 最大重试次数 cons…...
Android15默认授权浮窗权限
我们经常有那种需求,客户需要定制的apk集成在ROM中,并且默认授予其【显示在其他应用的上层】权限,也就是我们常说的浮窗权限,那么我们就可以通过以下方法在wms、ams等系统服务的systemReady()方法中调用即可实现预置应用默认授权浮…...
Device Mapper 机制
Device Mapper 机制详解 Device Mapper(简称 DM)是 Linux 内核中的一套通用块设备映射框架,为 LVM、加密磁盘、RAID 等提供底层支持。本文将详细介绍 Device Mapper 的原理、实现、内核配置、常用工具、操作测试流程,并配以详细的…...
