美畅物联丨掌握Wireshark:GB28181协议报文分析实战指南

Wireshark,一款在网络安全与协议分析领域享有盛誉的网络嗅探器,凭借其强大的功能集、直观的图形用户界面以及广泛的跨平台兼容性,已成为众多开发者不可或缺的得力助手。其开源特性吸引了大量开发者的积极参与,不断推动其功能的完善与升级。

在GB/T 28181协议(专为视频监控系统设计的信令协议)的广泛应用中,Wireshark展现出了其无可比拟的价值。面对设备无法上线、视频流传输中断等复杂问题,Wireshark凭借其精准的抓包能力和深入的数据分析能力,成为快速定位问题根源、优化网络性能、确保系统稳定运行的关键工具。今天美畅物联将和大家深入探讨如何利用Wireshark对GB/T 28181协议进行高效捕获与深入分析,为解决日常的应用提供有力支持。
实现步骤——以注册交互过程为例
1、在服务器/客户端抓包

在网络环境中,无论是服务器端还是客户端,都是数据交互的关键节点。首先需要在这两者之一进行抓包操作。抓包操作的具体实施方法会受到操作系统类型(如Windows、Linux、macOS等)以及网络环境(如局域网、广域网、不同的网络拓扑结构等)的显著影响,鉴于其复杂性和多样性,在此不做详细阐述。为了便于阐述后续步骤,我们将以在服务器端进行抓包为例。在成功抓取数据包之后,需要将这些数据包拷贝到已经安装了Wireshark软件的电脑上,以便进行后续分析。
2、打开Wireshark并加载数据包
双击启动Wireshark软件,找到相应的操作选项,打开之前拷贝过来的数据包文件。一旦文件成功加载,Wireshark将会在其界面中显示出此次捕获到的所有数据包的详细信息,这些信息包含了数据包的各个属性,如源地址、目的地址、协议类型、数据长度等。

3、过滤SIP包
GB/T 28181协议在信令传输方面,通常采用SIP(Session Initiation Protocol,会话初始协议)。SIP协议在网络通信中负责建立、修改和终止多媒体会话,对于整个通信流程起着至关重要的作用。我们可通过Wireshark的过滤器功能,输入“sip”作为关键词,从而快速筛选出所有SIP协议的数据包。

4. 找到目标IP的数据包
在过滤后的SIP数据包列表中,我们需进一步利用Wireshark的IP地址筛选功能,精准定位到目标IP地址所对应的数据包。这一步骤不仅提高了数据分析的精准度,还极大地方便了后续的数据查找与比对工作。通过深入分析这些数据包中的关键信息,我们可以更准确地理解GB/T 28181协议下的信令交互过程。

5. 追踪UDP流
在成功定位到目标IP地址的数据包后,我们可通过右键点击该数据包并选择【追踪流】->【UDP流】选项(若信令通过TCP传输,则选择【TCP流】),从而直观地追踪并展示整个UDP流中的数据交互过程。这一步骤对于深入理解GB/T 28181协议下的信令交互机制至关重要。通过深入分析UDP流中的数据包内容、顺序以及时间戳等信息,我们可以清晰地看到通信双方在整个注册过程中的数据交互细节,从而更准确地判断设备在平台上的在线状态。

6、查看关键信息
在追踪到的UDP流中,我们可以清晰地看到通信双方在整个注册过程中的数据交互细节。通过深入分析这些数据包中的关键信息(如请求类型、响应状态码、消息体内容等),我们可以准确地还原整个注册流程,并据此判断设备在平台上的在线状态。这一过程不仅有助于我们验证GB/T 28181协议实现的正确性,还为后续的优化与故障排查提供了宝贵的数据支持。同时,通过对比不同数据包之间的差异和变化,我们还可以发现潜在的网络问题或安全隐患,为开发者提供及时的预警和解决方案。

综上所述,通过Wireshark这一强大的网络协议分析工具,我们可以轻松实现对GB/T 28181协议报文的精准捕获与深入分析。这一过程不仅极大地提升了问题诊断与解决的效率,还为我们深入理解网络协议的工作原理提供了有力支撑。
————————————————
关注“美畅物联”,了解更多视频汇聚及AIoT底座解决方案。
相关文章:
美畅物联丨掌握Wireshark:GB28181协议报文分析实战指南
Wireshark,一款在网络安全与协议分析领域享有盛誉的网络嗅探器,凭借其强大的功能集、直观的图形用户界面以及广泛的跨平台兼容性,已成为众多开发者不可或缺的得力助手。其开源特性吸引了大量开发者的积极参与,不断推动其功能的完善…...
【python】OpenCV—WaterShed Algorithm
文章目录 1、功能描述2、代码实现3、完整代码4、效果展示5、涉及到的库函数5.1、cv2.pyrMeanShiftFiltering5.2、cv2.morphologyEx5.3、cv2.distanceTransform5.4、cv2.normalize5.5、cv2.watershed 6、更多例子7、参考 1、功能描述 基于分水岭算法对图片进行分割 分水岭分割…...
CSS flex布局- 最后一个元素占满剩余可用高度转载
效果图 技术要点 height父元素必须有一个设定的高度flex-grow: 1 flex 盒子模型内的该元素将会占据父容器中剩余的空间F12检查最后一行的元素,高度就已经改变了;...
Camp4-L1:XTuner 微调个人小助手认知
书生浦语大模型实战营第四期-XTuner 微调个人小助手认知 教程链接:https://github.com/InternLM/Tutorial/blob/camp4/docs/L1/XTuner/README.md任务链接:https://github.com/InternLM/Tutorial/blob/camp4/docs/L1/XTuner/task.md提交链接:…...
Qt:语言家视图
1.一不小心将qt语言家点成这样 2.点击查看->视图 3.效果...
【Paper Note】利用Boundary-aware Attention边界感知注意力机制增强部分伪造音频定位
利用Boundary-aware Attention边界感知注意力机制增强部分伪造音频定位 摘要核心模块什么是边界?什么是边界特征? 写作背景解决的问题 方法1. 特征提取使用预训练好的自监督学习模型进行前端特征提取Attentive poolingQ:为什么使用Attentive …...
海外共享奶牛牧场投资源码-理财金融源码-基金源码-共享经济源码
新版海外共享奶牛牧场投资源码/理财金融源码/基金源码/共享经济源码...
iOS静态库(.a)及资源文件的生成与使用详解(OC版本)
引言 iOS静态库(.a)及资源文件的生成与使用详解(Swift版本)_xcode 合并 .a文件-CSDN博客 在前面的博客中我们已经介绍了关于iOS静态库的生成步骤以及关于资源文件的处理,在本篇博客中我们将会以Objective-C为基础语言…...
Python自动化:关键词密度分析与搜索引擎优化
在数字营销领域,搜索引擎优化(SEO)是提升网站可见性和吸引有机流量的关键。关键词密度分析作为SEO的一个重要组成部分,可以帮助我们理解特定关键词在网页内容中的分布情况,从而优化网页内容以提高搜索引擎排名。本文将…...
苏州金龙新V系客车创新引领旅游出行未来
10月25日,为期三天的“2024第六届旅游出行大会”在风景秀丽的云南省丽江市落下帷幕。本次大会由中国旅游车船协会主办,全面展示了中国旅游出行行业最新发展动态和发展成就,为旅游行业带来全新发展动力。 在大会期间,备受瞩目的展车…...
linux:DNS服务
DNS简介: DNS系统使用的是网络的查询,那么自然需要有监听的port。DNS使用的是53端口, 在/etc/services(搜索domain)这个文件中能看到。通常DNS是以UDP这个较快速的数据传输协议来查 询的,但是没有查询到完…...
传奇架设好后创建不了行会,开区时点创建行会没反应的解决办法
传奇架设好后,测试了版本,发现行会创建不了,按道理说一般的版本在创建行会这里不会出错的,因为这是引擎自带的功能。 建立不了行会虽然说问题不大,但也不小,会严重影响玩家的游戏体验,玩游戏为的…...
【小白学机器学习28】 统计学脉络+ 总体+ 随机抽样方法
目录 参考书,学习书 0 统计学知识大致脉络 1 个体---抽样---整体 1.1 关于个体---抽样---整体,这个三段式关系 1.2 要明白,自然界的整体/母体是不可能被全部认识的 1.2.1 不要较真,如果是人为定义的一个整体,是可…...
安全研究 | 不同编程语言中 IP 地址分类的不一致性
作为一名安全研究人员,我分析了不同编程语言中 IP 地址分类 的行为。最近,我注意到一些有趣的不一致性,特别是在循环地址和私有 IP 地址的处理上。在这篇文章中,我将分享我对此问题的观察和见解。 设置 我检查了多种编程语言&am…...
小小的表盘还能玩出这么多花样?华为手表这次细节真的拉满
没想到小小的表盘还能玩出这么多花样?华为这次细节真的拉满!还有没有你不知道的神奇玩法? 情绪萌宠,心情状态抬腕可见 好心情就像生活馈赠的糖果,好的心情让我们遇到困难也不惧打击!HUAWEI WATCH GT 5情绪…...
trueNas 24.10 docker配置文件daemon.json无法修改(重启被覆盖)解决方案
前言 最近听说truenas的24.10版本开放docker容器解决方案放弃了原来难用的k3s,感觉非常巴适,就研究了一下,首先遇到无法迁移老系统应用问题比较好解决,使用sudo登录ssh临时修改daemon.json重启docker后进行docker start 容器即可…...
数字孪生,概念、应用与未来展望
随着科技的飞速发展,数字化已经成为各行各业的发展趋势,在这个过程中,数字孪生作为一种新兴的技术,逐渐引起了人们的关注,本文将对数字孪生的概念、应用以及未来展望进行详细介绍。 数字孪生的概念: 数字孪…...
Chromium HTML Input 类型Text 对应c++
一、文本域(Text Fields) 文本域通过 <input type"text"> 标签来设定,当用户要在表单中键入字母、数字等内容时,就会用到文本域。 <!DOCTYPE html> <html> <head> <meta charset"ut…...
SpringMvc参数传递
首先对于post请求汉字乱码需要进行过滤器配置 普通参数传递 直接传递 客户端传递的属性名与我的bean中的函数参数名相同 映射传递RequestParam("XXX") 在我们方法参数中定义一个与客户端属性名一致 并绑定参数 POJO实体类传递 嵌套POJO传递 数组likes参数传递…...
西安国际数字影像产业园:数字化建设赋能产业升级与拓展
西安国际数字影像产业园的数字化建设,在当前经济与科技迅猛发展的大背景下,已然成为提升园区管理效率、服务水平以及运营效果的关键趋势。随着信息技术日新月异的进步,数字化更是成为这座产业园转型升级的核心关键词。如今,西安国…...
脑机新手指南(八):OpenBCI_GUI:从环境搭建到数据可视化(下)
一、数据处理与分析实战 (一)实时滤波与参数调整 基础滤波操作 60Hz 工频滤波:勾选界面右侧 “60Hz” 复选框,可有效抑制电网干扰(适用于北美地区,欧洲用户可调整为 50Hz)。 平滑处理&…...
Swift 协议扩展精进之路:解决 CoreData 托管实体子类的类型不匹配问题(下)
概述 在 Swift 开发语言中,各位秃头小码农们可以充分利用语法本身所带来的便利去劈荆斩棘。我们还可以恣意利用泛型、协议关联类型和协议扩展来进一步简化和优化我们复杂的代码需求。 不过,在涉及到多个子类派生于基类进行多态模拟的场景下,…...
基于Flask实现的医疗保险欺诈识别监测模型
基于Flask实现的医疗保险欺诈识别监测模型 项目截图 项目简介 社会医疗保险是国家通过立法形式强制实施,由雇主和个人按一定比例缴纳保险费,建立社会医疗保险基金,支付雇员医疗费用的一种医疗保险制度, 它是促进社会文明和进步的…...
UR 协作机器人「三剑客」:精密轻量担当(UR7e)、全能协作主力(UR12e)、重型任务专家(UR15)
UR协作机器人正以其卓越性能在现代制造业自动化中扮演重要角色。UR7e、UR12e和UR15通过创新技术和精准设计满足了不同行业的多样化需求。其中,UR15以其速度、精度及人工智能准备能力成为自动化领域的重要突破。UR7e和UR12e则在负载规格和市场定位上不断优化…...
智能仓储的未来:自动化、AI与数据分析如何重塑物流中心
当仓库学会“思考”,物流的终极形态正在诞生 想象这样的场景: 凌晨3点,某物流中心灯火通明却空无一人。AGV机器人集群根据实时订单动态规划路径;AI视觉系统在0.1秒内扫描包裹信息;数字孪生平台正模拟次日峰值流量压力…...
今日学习:Spring线程池|并发修改异常|链路丢失|登录续期|VIP过期策略|数值类缓存
文章目录 优雅版线程池ThreadPoolTaskExecutor和ThreadPoolTaskExecutor的装饰器并发修改异常并发修改异常简介实现机制设计原因及意义 使用线程池造成的链路丢失问题线程池导致的链路丢失问题发生原因 常见解决方法更好的解决方法设计精妙之处 登录续期登录续期常见实现方式特…...
视频行为标注工具BehaviLabel(源码+使用介绍+Windows.Exe版本)
前言: 最近在做行为检测相关的模型,用的是时空图卷积网络(STGCN),但原有kinetic-400数据集数据质量较低,需要进行细粒度的标注,同时粗略搜了下已有开源工具基本都集中于图像分割这块,…...
JS设计模式(4):观察者模式
JS设计模式(4):观察者模式 一、引入 在开发中,我们经常会遇到这样的场景:一个对象的状态变化需要自动通知其他对象,比如: 电商平台中,商品库存变化时需要通知所有订阅该商品的用户;新闻网站中࿰…...
Python 高效图像帧提取与视频编码:实战指南
Python 高效图像帧提取与视频编码:实战指南 在音视频处理领域,图像帧提取与视频编码是基础但极具挑战性的任务。Python 结合强大的第三方库(如 OpenCV、FFmpeg、PyAV),可以高效处理视频流,实现快速帧提取、压缩编码等关键功能。本文将深入介绍如何优化这些流程,提高处理…...
面试高频问题
文章目录 🚀 消息队列核心技术揭秘:从入门到秒杀面试官1️⃣ Kafka为何能"吞云吐雾"?性能背后的秘密1.1 顺序写入与零拷贝:性能的双引擎1.2 分区并行:数据的"八车道高速公路"1.3 页缓存与批量处理…...
