当前位置: 首页 > news >正文

RNN(循环神经网络)详解

1️⃣ RNN介绍

前馈神经网络(CNN,全连接网络)的流程是前向传播、反向传播和参数更新,存在以下不足:

  • 无法处理时序数据:时序数据长度一般不固定,而前馈神经网络要求输入和输出的维度是固定的,不能改变
  • 缺少记忆:前馈神经网络没有机制去记忆和处理之前的输入数据,因此无法处理像语言、股票走势或天气预报等 序列化时间依赖性强的数据

针对前馈神经网络上述问题,RNN引入以下机制:

  • 不同时间步的隐藏层之间是相连的
  • 在时刻t,隐藏层的输入包括两部分,当前时刻的输入 x t x_t xt和上一个时间步隐藏层的输出 s t − 1 s_{t-1} st1

通过这两条机制,模型能够记忆之前的输入数据,捕捉序列的上下文信息

看完这几句话你一定在想,这说的是个啥?太晕了,没关系,慢慢往下看

多说一句,RNN在很久之前就提出了,Jordan RNN于1986被提出,Elman RNN于1990年提出。


2️⃣ 原理介绍

接下来,讲讲具体原理,解决一下上面的迷惑。看下面这张图,分析一下 o t o_t ot的表达式:
在这里插入图片描述

  • x t x_t xt是t时刻的输入
  • s t s_t st是t时刻的记忆, s t = f ( U ⋅ x t + W ⋅ s t − 1 ) s_t=f(U\cdot x_t+W\cdot s_{t-1}) st=f(Uxt+Wst1),f表示激活函数
  • o t o_t ot是t时刻的输出, o t = s o f t m a x ( V ⋅ s t ) o_t=softmax(V\cdot s_t) ot=softmax(Vst)

看完上面这张图,对于W是什么疑惑很大,我一开始学习的时候也是这样,W到底是啥呢?来看下面这张图:
在这里插入图片描述

看完这张图,对于W的描述一目了然。W是在不同的时间步 隐藏层之间递归的权重。在RNN中,不同时间步使用相同的W,为了保证信息能够传递下去。

其实这里还有一个疑惑,按照我之前的认知,神经网络可训练的参数w和b都是在神经元上的,例如下面这张图。那么问题来了,RNN隐藏层神经元上参数是啥样的呢?
在这里插入图片描述
虽然下面的左图是这样画的,搞得好像参数U,W,V“漂浮在空中一般”,实际上,它们都在神经元上。准确的来说应该是右图的形式,U和W都在隐藏层神经元上,V在输出层神经元上。所以之前理解的神经元是一个神经元上只有一种参数。对于RNN来说,隐藏层神经元上有两种参数U和W。终于搞懂了,爽!
在这里插入图片描述
分析完RNN中参数的具体含义,来看看参数的尺寸:
U = 隐藏层神经元个数 × 输入尺寸 W = 隐藏层神经元个数 × 隐藏层神经元个数 V = 输出尺寸 × 隐藏层神经元个数 U=隐藏层神经元个数×输入尺寸\\ W=隐藏层神经元个数×隐藏层神经元个数\\ V=输出尺寸×隐藏层神经元个数 U=隐藏层神经元个数×输入尺寸W=隐藏层神经元个数×隐藏层神经元个数V=输出尺寸×隐藏层神经元个数
这样最简单的RNN就分析完了。


3️⃣ 代码

接下来看一下最简单的代码:

import torch
import torch.nn as nn# 参数设置
input_size = 2    # 每个时间步的特征维度
hidden_size = 5   # 隐层神经元数量
num_layers = 1    # RNN层数
output_size = 3   # 假设输出的维度# RNN对象实例化
rnn = nn.RNN(input_size, hidden_size, num_layers, batch_first=True)# U:输入到隐藏状态的权重矩阵
U = rnn.weight_ih_l0  # 输入到隐藏状态的权重矩阵
print("矩阵 U 的大小 (输入到隐藏层):", U.shape)  # 应为 (hidden_size, input_size)# W:隐藏状态到隐藏状态的权重矩阵
W = rnn.weight_hh_l0  # 隐藏状态之间的递归权重矩阵
print("矩阵 W 的大小 (隐藏层到隐藏层):", W.shape)  # 应为 (hidden_size, hidden_size)# V:输出层权重矩阵
# 在 PyTorch 中没有直接实现,可以添加一个 Linear 层来模拟
V_layer = nn.Linear(hidden_size, output_size)  # 定义线性层
V = V_layer.weight  # V 就是隐藏状态到输出层的权重矩阵
print("矩阵 V 的大小 (隐藏层到输出层):", V.shape)  # 应为 (output_size, hidden_size)

输出:

矩阵 U 的大小 (输入到隐藏层): torch.Size([5, 2])
矩阵 W 的大小 (隐藏层到隐藏层): torch.Size([5, 5])
矩阵 V 的大小 (隐藏层到输出层): torch.Size([3, 5])

4️⃣ 总结

  • 标准的RNN存在梯度消失问题,无法捕捉长时间序列的关系。因此LSTM和GRU被提出

5️⃣ 参考

  • 深度学习-神经网络-循环神经网络(一):RNN(Recurrent Neural Network,循环神经网络;1990年)
  • 理解循环神经网络(RNN)

相关文章:

RNN(循环神经网络)详解

1️⃣ RNN介绍 前馈神经网络(CNN,全连接网络)的流程是前向传播、反向传播和参数更新,存在以下不足: 无法处理时序数据:时序数据长度一般不固定,而前馈神经网络要求输入和输出的维度是固定的&a…...

【AI抠图整合包及教程】探索SAM 2:图像与视频分割领域的革新者

在人工智能的浩瀚星空中,Meta公司的Segment Anything Model 2(SAM 2)犹如一颗璀璨的新星,以其前所未有的图像与视频分割能力,照亮了计算机视觉领域的新航道。SAM 2不仅继承了其前身SAM在零样本分割领域的卓越表现&…...

DevExpress中文教程 - 如何使用AI模型检查HTML编辑中的语法?

DevExpress .NET MAUI多平台应用UI组件库提供了用于Android和iOS移动开发的高性能UI组件,该组件库包括数据网格、图表、调度程序、数据编辑器、CollectionView和选项卡组件等。 目前许多开发人员正在寻找多种方法将AI添加到解决方案中(这通常比想象的要…...

python包管理工具pip和conda的使用对比

python包管理工具pip和conda的使用对比 总述1. pip使用2. conda注意虚拟环境之间的嵌套,这个会导致安装包后看不到包,实际是安装到了base环境里 未完待续 总述 pip相对于conda,对应包的依赖关系管理不强,坏处是容易造成包冲突,好…...

Linux案例:DNS服务器配置

Linux案例:DNS服务器配置 实验一:正向解析 服务端配置: [rootserver ~]# setenforce 0 [rootserver ~]# nmcli c modify ens160 ipv4.method manual ipv4.addresses 192.168.70.131/24 ipv4.gateway 192.168.70.2 ipv4.dns 114.114.114.11…...

【Python】__getitem__()方法

getitem() 方法介绍 __getitem__ 方法是 Python 中的一个特殊方法(也被称为魔术方法或特殊方法),用于在类中实现索引访问对象元素的操作。这个方法允许对象实现类似于列表、字典等容器类型的索引操作。当自定义类中定义了 __getitem__ 方法时…...

《Atomic Picnic》进不去游戏解决方法

Atomic Picnic有时候会遇到进不去游戏的情况,这可能是由多种原因造成的,玩家可以采取很多解决方法,比如检查电脑配置、更新系统和驱动或验证游戏文件。 Atomic Picnic进不去游戏怎么办 检查电脑配置 查看自己的电脑配置是否达到了游戏的要求…...

学习日志007--python函数 学完再练习练

函数小练习 一、函数的概念 1.定义 函数是组织好的,可重复使用的,用来实现单一,或相关联功能的代码段。 2.作用 函数能提高应用的模块性,和代码的重复利用率 3.定义 函数代码块以 def 关键词开头,后接函数标识符…...

DOM操作和事件监听综合练习——轮播图

下面制作一个如下图所示的轮播图&#xff08;按Enter键可以控制轮播的开启和关闭&#xff0c;或者点击按钮“第几张”即可跳转到第几张&#xff09;&#xff1a; 下面是其HTML和CSS代码&#xff08;还没有设置轮播&#xff09;&#xff1a; <!DOCTYPE html> <html …...

nodejs:下载,安装,系统环境配置,更换镜像

​​​​ 下载 地址&#xff1a;https://nodejs.org/zh-cn/download/prebuilt-installer 安装包 开始安装 安装完成 配置环境变量 将原来的用户变量-> Path D:\nodejs\node_global 【系统变量】 添加Path–>变量名&#xff1a;NODE_PATH-> 变量值&#xff1a;D: \…...

【Django】视图函数

【Django】视图函数 视图函数的本质是Python中的函数&#xff0c;视图函数负责处理用户的请求并返回响应&#xff0c;该响应可以是网页的HTML内容、重定向、404错误、XML文档、图像或者任何东西&#xff0c;一般在应用中的views.py编写&#xff0c;示例代码如下&#xff1a; …...

MySQL查询-补充

数据准备&#xff1a; -- 部门表 create table dept(deptno int primary key, -- 部门编号 主键&#xff1a;唯一&#xff0c;非空dname varchar(14), -- 部门名称loc varchar(13) -- 部门地址 );insert into dept values (10,accounting,n…...

【Python Tips】多个条件判断——一种更加简洁清晰的写法

一、引言 在python写条件判断 if 语句时&#xff0c;有时会遇到多种条件的真假判断考虑&#xff0c;比如要同时考虑A和B两个变量的True or False&#xff0c;只有当两者都为真&#xff0c;或都为假&#xff0c;或任意为真为假&#xff0c;再继续处理。此时如果用 if&#xff0c…...

【Vue】简易博客项目跟做

项目框架搭建 1.使用vue create快速搭建vue项目 2.使用VC Code打开新生成的项目 端口号简单配置 修改vue.config.js文件&#xff0c;内容修改如下 所需库安装 npm install vue-resource --save --no-fund npm install vue-router3 --save --no-fund npm install axios --save …...

【HarmonyOS】PixelMap转化为Uri

【HarmonyOS】PixelMap转化为Uri 问题背景 鸿蒙中的PixelMap类型&#xff0c;其实类似于Android和IOS中的bitmap&#xff0c;是对图片数据信息进行描述的一种逻辑运算使用的图片类型。 而鸿蒙中的Uri类型&#xff0c;本质其实是带file头的文件存储地址&#xff0c;是用来指向…...

【架构论文-2】架构设计中存在的问题和改进方向

一、性能优化相关 当前情况 在高负载情况下&#xff0c;系统的响应时间出现了一定程度的延迟。特别是在业务高峰期&#xff0c;大量并发请求导致部分关键业务模块的处理效率降低&#xff0c;影响了用户体验。改进方向 计划引入性能分析工具对系统进行全面的性能剖析&#xff0…...

go语言中的结构体含义和用法详解

在Go语言中,结构体(struct)是一种聚合数据类型,可以将多个不同类型的数据组合成一个更复杂的类型。结构体类似于面向对象编程中的“类”,但是Go语言没有类和继承的概念,而是通过结构体和接口实现面向对象编程的特性。 1. 结构体的定义 结构体是一组字段(field)的集合…...

985研一学习日记 - 2024.11.8

一个人内耗&#xff0c;说明他活在过去&#xff1b;一个人焦虑&#xff0c;说明他活在未来。只有当一个人平静时&#xff0c;他才活在现在。 日常 1、起床 2、健身 3、LeetCode刷了2题 买卖股票的最佳时机 将最大利润拆分为每天的利润之和&#xff0c;仅仅收集每天的正利润…...

编写一个基于React的聊天室

前言 此前已经编写了一版后端的im&#xff0c;此次就用其作为服务端&#xff0c;可查看参考资料1 代码 使用WebStorm创建React项目 安装依赖包 PS C:\learn-demo\front\chatroom> npm installadded 183 packages, and audited 184 packages in 16s43 packages are looki…...

[前端]NodeJS常见面试题目

什么是非阻塞 I/O? Node.js 如何实现非阻塞 I/O? 非阻塞 I/O 是一种编程模式&#xff0c;它允许 I/O 操作&#xff08;如读取文件、网络请求等&#xff09;在执行时不阻塞程序的其余部分。换句话说&#xff0c;当一个 I/O 操作发起后&#xff0c;程序可以立即继续执行其他任…...

Unity3D中Gfx.WaitForPresent优化方案

前言 在Unity中&#xff0c;Gfx.WaitForPresent占用CPU过高通常表示主线程在等待GPU完成渲染&#xff08;即CPU被阻塞&#xff09;&#xff0c;这表明存在GPU瓶颈或垂直同步/帧率设置问题。以下是系统的优化方案&#xff1a; 对惹&#xff0c;这里有一个游戏开发交流小组&…...

【Java学习笔记】Arrays类

Arrays 类 1. 导入包&#xff1a;import java.util.Arrays 2. 常用方法一览表 方法描述Arrays.toString()返回数组的字符串形式Arrays.sort()排序&#xff08;自然排序和定制排序&#xff09;Arrays.binarySearch()通过二分搜索法进行查找&#xff08;前提&#xff1a;数组是…...

Swift 协议扩展精进之路:解决 CoreData 托管实体子类的类型不匹配问题(下)

概述 在 Swift 开发语言中&#xff0c;各位秃头小码农们可以充分利用语法本身所带来的便利去劈荆斩棘。我们还可以恣意利用泛型、协议关联类型和协议扩展来进一步简化和优化我们复杂的代码需求。 不过&#xff0c;在涉及到多个子类派生于基类进行多态模拟的场景下&#xff0c;…...

理解 MCP 工作流:使用 Ollama 和 LangChain 构建本地 MCP 客户端

&#x1f31f; 什么是 MCP&#xff1f; 模型控制协议 (MCP) 是一种创新的协议&#xff0c;旨在无缝连接 AI 模型与应用程序。 MCP 是一个开源协议&#xff0c;它标准化了我们的 LLM 应用程序连接所需工具和数据源并与之协作的方式。 可以把它想象成你的 AI 模型 和想要使用它…...

[10-3]软件I2C读写MPU6050 江协科技学习笔记(16个知识点)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16...

中医有效性探讨

文章目录 西医是如何发展到以生物化学为药理基础的现代医学&#xff1f;传统医学奠基期&#xff08;远古 - 17 世纪&#xff09;近代医学转型期&#xff08;17 世纪 - 19 世纪末&#xff09;​现代医学成熟期&#xff08;20世纪至今&#xff09; 中医的源远流长和一脉相承远古至…...

JVM 内存结构 详解

内存结构 运行时数据区&#xff1a; Java虚拟机在运行Java程序过程中管理的内存区域。 程序计数器&#xff1a; ​ 线程私有&#xff0c;程序控制流的指示器&#xff0c;分支、循环、跳转、异常处理、线程恢复等基础功能都依赖这个计数器完成。 ​ 每个线程都有一个程序计数…...

Linux 中如何提取压缩文件 ?

Linux 是一种流行的开源操作系统&#xff0c;它提供了许多工具来管理、压缩和解压缩文件。压缩文件有助于节省存储空间&#xff0c;使数据传输更快。本指南将向您展示如何在 Linux 中提取不同类型的压缩文件。 1. Unpacking ZIP Files ZIP 文件是非常常见的&#xff0c;要在 …...

【Linux】Linux 系统默认的目录及作用说明

博主介绍&#xff1a;✌全网粉丝23W&#xff0c;CSDN博客专家、Java领域优质创作者&#xff0c;掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域✌ 技术范围&#xff1a;SpringBoot、SpringCloud、Vue、SSM、HTML、Nodejs、Python、MySQL、PostgreSQL、大数据、物…...

快刀集(1): 一刀斩断视频片头广告

一刀流&#xff1a;用一个简单脚本&#xff0c;秒杀视频片头广告&#xff0c;还你清爽观影体验。 1. 引子 作为一个爱生活、爱学习、爱收藏高清资源的老码农&#xff0c;平时写代码之余看看电影、补补片&#xff0c;是再正常不过的事。 电影嘛&#xff0c;要沉浸&#xff0c;…...