当前位置: 首页 > news >正文

空间解析几何【上】

文章目录

    • 两向量共线&三向量共面
    • 线段定比分点
    • 内积&外积&混合积
      • 内积(点积)
      • 外积(叉积)
        • 几何性质
      • 混合积
        • 轮换对称性
        • 对换改变一次符号
        • 线性性质
        • 几何性质
    • 球面方程
      • 特点
    • 空间平面
      • 参数方程
      • 行列式方程(点位式)
      • 向量式方程
      • 三点式方程
        • 行列式方程
      • 点法式
      • 一般式
      • 截距式
      • 法式方程
        • 离差
          • 几何意义
      • 两平面位置关系
        • 相交
        • 平行
        • 重合

两向量共线&三向量共面

两向量 a ⃗ = ( x 1 , y 1 , z 1 ) \vec{a} = (x_1, y_1, z_1) a =(x1,y1,z1) b ⃗ = ( x 2 , y 2 , z 2 ) \vec{b} = (x_2, y_2, z_2) b =(x2,y2,z2) 共线充要条件是对应坐标成比例,即
x 1 x 2 = y 1 y 2 = z 1 z 2 \frac{x_1}{x_2} = \frac{y_1}{y_2} = \frac{z_1}{z_2} x2x1=y2y1=z2z1
推论

三点 A ( x 1 , y 1 , z 1 ) A(x_1, y_1, z_1) A(x1,y1,z1) B ( x 2 , y 2 , z 2 ) B(x_2, y_2, z_2) B(x2,y2,z2) C ( x 3 , y 3 , z 3 ) C(x_3, y_3, z_3) C(x3,y3,z3) 共线充要条件
x 2 − x 1 x 3 − x 1 = y 2 − y 1 y 3 − y 1 = z 2 − z 1 z 3 − z 1 \frac{x_2 - x_1}{x_3 - x_1} = \frac{y_2 - y_1}{y_3 - y_1} = \frac{z_2 - z_1}{z_3 - z_1} x3x1x2x1=y3y1y2y1=z3z1z2z1

三非零向量 a ⃗ ( x 1 , y 1 , z 1 ) \vec{a}(x_1, y_1, z_1) a (x1,y1,z1) b ⃗ ( x 2 , y 2 , z 2 ) \vec{b}(x_2, y_2, z_2) b (x2,y2,z2) c ⃗ ( x 3 , y 3 , z 3 ) \vec{c}(x_3, y_3, z_3) c (x3,y3,z3) 共面充要条件
∣ x 1 y 1 z 1 x 2 y 2 z 2 x 3 y 3 z 3 ∣ = 0 \left| \begin{array}{ccc} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \end{array} \right|= 0 x1x2x3y1y2y3z1z2z3 =0

四点 A i ( x i , y i , z i )   ( i = 1 , 2 , 3 , 4 ) A_i (x_i, y_i, z_i)\, ( i = 1, 2, 3, 4) Ai(xi,yi,zi)(i=1,2,3,4) 共面充要条件
∣ x 2 − x 1 y 2 − y 1 z 2 − z 1 x 3 − x 1 y 3 − y 1 z 3 − z 1 x 4 − x 1 y 4 − y 1 z 4 − z 1 ∣ = 0 \left| \begin{array}{ccc} x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ x_3 - x_1 & y_3 - y_1 & z_3 - z_1 \\ x_4 - x_1 & y_4 - y_1 & z_4 - z_1 \end{array} \right| = 0 x2x1x3x1x4x1y2y1y3y1y4y1z2z1z3z1z4z1 =0

∣ x 1 y 1 z 1 1 x 2 y 2 z 2 1 x 3 y 3 z 3 1 x 4 y 4 z 4 1 ∣ = 0 \left| \begin{array}{cccc} x_1 & y_1 & z_1 & 1 \\ x_2 & y_2 & z_2 & 1 \\ x_3 & y_3 & z_3 & 1 \\ x_4 & y_4 & z_4 & 1 \end{array} \right|= 0 x1x2x3x4y1y2y3y4z1z2z3z41111 =0

线段定比分点

设空间两点 P 1 ( x 1 , y 1 , z 1 ) P_1(x_1, y_1, z_1) P1(x1,y1,z1) P 2 ( x 2 , y 2 , z 2 ) P_2(x_2, y_2, z_2) P2(x2,y2,z2),点 P ( x , y , z ) P(x, y, z) P(x,y,z) P 1 P 2 P_1 P_2 P1P2 两点连线上按比例 λ \lambda λ 分割线段 P 1 P 2 P_1 P_2 P1P2 的点 P P P,即

P 1 P P P 2 = λ \frac{P_1 P}{P P_2} = \lambda PP2P1P=λ

其中,

{ λ > 0 ( P ∈ P 1 P 2 ) λ < 0 ( P ∉ P 1 P 2 ) \begin{cases} \lambda > 0 & (P\in P_1 P_2 ) \\ \lambda < 0 & (P\notin P_1 P_2 ) \end{cases} {λ>0λ<0(PP1

相关文章:

空间解析几何【上】

文章目录 两向量共线&三向量共面线段定比分点内积&外积&混合积内积(点积)外积(叉积)几何性质混合积轮换对称性对换改变一次符号线性性质几何性质球面方程特点空间平面参数方程行列式方程(点位式)向量式方程三点式方程行列式方程点法式一般式截距式法式方程离…...

Python 获取PDF的各种页面信息(页数、页面尺寸、旋转角度、页面方向等)

目录 安装所需库 Python获取PDF页数 Python获取PDF页面尺寸 Python获取PDF页面旋转角度 Python获取PDF页面方向 Python获取PDF页面标签 Python获取PDF页面边框信息 了解PDF页面信息对于有效处理、编辑和管理PDF文件至关重要。PDF文件通常包含多个页面&#xff0c;每个页…...

独孤思维:曾经副业赚大钱的人,怎么不见了

01 总有一双眼睛默默关注你。 别以为自己每天做项目&#xff0c;日更文章&#xff0c;没人看。 总会有人默默观察你。 看你能坚持多久&#xff0c;看多段时间&#xff0c;你是不是还在。 今天上午&#xff0c;有个2年前认识的副业同行&#xff0c;今天突然跟我发消息。 说…...

OpenGL 异常处理-glCreateShader失败

【1】glCreateShader创建顶点着色器时候报错&#xff0c;如下 【2】原因分析 初始化失败&#xff0c;你使用一个扩extension loader library来访问现代OpenGL&#xff0c;当需要初始化它时&#xff0c;加载器需要一个当前的上下文来加载 【3】解决办法 GLenum glew_err gle…...

【el-pagination的使用及修改分页组件的整体大小修改默认样式的宽度详细教程】

今天遇到个bug&#xff0c;使用element-puls中的分页的时候&#xff0c;长度会超出盒子&#xff0c;今天教大家如何修改el-pagination的宽度&#xff0c;以及修改分页组件的整体大小 直接修改 style"width: 100%; margin-top: 10px"不生效 控制台修改el-pagination…...

Uniapp的学习

uniapp的内容和vue网页开发会有很多区别&#xff0c;但是都是基于vue开发的&#xff0c;大多数业务还是在vue打交道&#xff0c;但是这些uniapp的特殊的知识点也是要掌握好的。 基本配置 创建uniapp项目 npx degit dcloudio/uni-preset-vue#vite-ts 项目名 &#xff1a;用于…...

C#-万物之父object、装箱拆箱

万物之父&#xff1a;object 基于里氏替换原则&#xff0c;可以用object容器装载一切类型的变量。可以用来表示不确定类型&#xff0c;作为函数参数类型 object是所有类型的基类 装箱拆箱 用object存值类型&#xff08;装箱&#xff09;→ 把值类型用引用类型存储&#xff0c;…...

AI大模型重塑软件开发流程:从自动化编码到智能协作的未来展望

目录 1. 引言&#xff1a;AI大模型的崛起与软件开发的变革 1.1 AI大模型的兴起与发展背景 1.2 软件开发的现状与痛点 1.3 AI大模型如何解决这些问题 2. AI大模型的工作原理与技术背景 2.1 什么是AI大模型&#xff1f; 2.2 深度学习与自然语言处理技术的演变 2.3 大模型…...

HTB:GreenHorn[WriteUP]

目录 连接至HTB服务器并启动靶机 使用nmap对靶机TCP端口进行开放扫描 再次使用nmap对这三个端口进行脚本、服务扫描 尝试先通过curl访问靶机80端口 将靶机IP与该域名写入hosts使DNS本地解析 使用浏览器访问greenhorn.htb 使用Wappalyzer插件查看该页面技术栈 尝试在sea…...

SelfAttention在Ascend上的实现

1 SelfAttention是什么&#xff1f; Self-Attention&#xff08;自注意力&#xff09;机制是深度学习领域的一种重要技术&#xff0c;尤其在自然语言处理&#xff08;NLP&#xff09;任务中得到广泛应用。它是 Transformer 架构的核心组成部分之一&#xff0c;由 Vaswani 等人…...

C#设计模式

文章目录 项目地址一、开放封闭原则1.1 不好的版本1.2 将BankProcess的实现改为接口1.3 修改BankStuff类和IBankClient类二、依赖倒置原则2.1 高层不应该依赖于低层模块2.1.1 不好的例子2.1.2 修改:将各个国家的歌曲抽象2.2 抽象不应该依于细节2.2.1 不同的人开不同的车(接口…...

仪表板展示|DataEase看中国:历年双十一电商销售数据分析

背景介绍 2024年“双十一”购物季正在火热进行中。自2009年首次推出至今&#xff0c;“双十一”已经成为中国乃至全球最大的购物狂欢节&#xff0c;并且延伸到了全球范围内的电子商务平台。随着人们消费水平的提升以及电子商务的普及&#xff0c;线上销售模式也逐渐呈现多元化…...

急着骂华为?我劝你别急

文 | AUTO芯球 作者 | 雷慢 赛力斯这下怒了&#xff01; 要对那些华为黑、问界黑出手了&#xff0c; 就在这几天&#xff0c;赛力斯起诉了一批蓄意抹黑、散步虚假信息的人。 起因是什么&#xff0c;听我慢慢说&#xff0c; 今年7月&#xff0c;佛山一辆问界M7发生交通事故…...

虚拟机linux7.9下安装mysql

1.MySQL官网下载安装包&#xff1a; MySQL :: Download MySQL Community Server https://cdn.mysql.com/archives/mysql-5.7/mysql-5.7.39-linux-glibc2.12-x86_64.tar.gz 2.解压文件&#xff1a; #tar xvzf mysql-5.7.39-linux-glibc2.12-x86_64.tar.gz 3.移动文件&#…...

【Linux】一篇文章轻松搞懂基本指令

本篇所有展示代码均是在超级用户的权限下进行的&#xff0c;如果不是超级用户并且一些命令执行的和我的不太一样&#xff0c;那么可以试着在对应命令前暂且加上sudo&#xff0c;我们在下一篇会讲权限问题&#xff0c;到时候再转换为普通用户。 本篇展示的内容是基于CentOs进行…...

深入浅出理解Spring和SpringBoot,剖析自动配置源码

文章目录 1.Spring2.SpringBoot3.小结 1.摘要 本文旨在带大家理解Spring框架和SpringBoot框架最为核心的部分&#xff0c;自Spring和SpringBoot问世以来&#xff0c;给Web开发掀起了巨大的浪潮&#xff0c;极大的缩短项目开发周期&#xff0c;下面将带大家分析Spring和SpringBo…...

Spring配置文件初始化加载(一)

1.枚举 public enum TestEnum {type_01("01", "zeroTest01ServiceImpl"),type_02("02", "zeroTest02ServiceImpl"),type_03("03", "zeroTest03ServiceImpl");private String type;private String pathClass; } …...

正则表达式 - 简介

正则表达式 - 简介 正则表达式&#xff08;Regular Expression&#xff0c;简称Regex&#xff09;是一种用于处理字符串的强大工具&#xff0c;它允许用户通过特定的模式&#xff08;pattern&#xff09;来搜索、匹配、查找和替换文本中的数据。正则表达式广泛应用于文本编辑器…...

【电机控制器】STC8H1K芯片——ADC电压采集

【电机控制器】STC8H1K芯片——ADC电压采集 文章目录 [TOC](文章目录) 前言一、ADC1.ADC初始化1.ADC_CONTR2.ADCCFG3.ADCTIM4.代码 2.ADC读取1.ADC_RES、ADC_RESL2.代码 3.VREF电压读取——MCU工作电压1.MCU工作电压计算公式2.代码 4.ADC被转换通道的输入电压读取1.ADC被转换通…...

图像格式中的 stride 和 pix stide

最近发现media codec 解码后 yuv 的拷贝时间很大&#xff0c;进一步分析后发现底层会一个像素一个像素拷贝&#xff0c;非常花时间。用过调整解码后图像的Stride&#xff08;步幅&#xff09;后直接进行内存块拷贝&#xff0c;可以大幅缩短拷贝时间 在YUV图像格式中&#xff0c…...

传统POE供电P1摄像头实现

首先&#xff0c;我们来了解一下什么是poe供电&#xff1f;poe供电是一种通过网络线&#xff08;通常为网线&#xff09;传输电能的技术。这种技术可以省去马达、插头等传统供电设备&#xff0c;以及不需要另外的电源延长线&#xff0c;从而实现方便的供电。 那么&#xff0c…...

云计算基础:AWS入门指南

&#x1f493; 博客主页&#xff1a;瑕疵的CSDN主页 &#x1f4dd; Gitee主页&#xff1a;瑕疵的gitee主页 ⏩ 文章专栏&#xff1a;《热点资讯》 云计算基础&#xff1a;AWS入门指南 云计算基础&#xff1a;AWS入门指南 云计算基础&#xff1a;AWS入门指南 引言 AWS概述 什么…...

pytorch torch.tile用法

指定各维度分别重复多少次 tile 是 PyTorch 中用于重复张量的函数。它可以沿指定的维度重复张量的元素。以下是一个示例代码&#xff0c;展示 tile 的用法&#xff1a; import torch# 创建一个张量 weight_hh torch.tensor([[1, 2], [3, 4]])# 假设批量大小为3 bs 3# 使用 …...

实战项目:通过自我学习让AI学习五子棋 - 1 - 项目定义

项目介绍 五子棋是一种博弈游戏。在棋盘上黑子和白子交替落子&#xff0c;先于在任何方向上将至少五个棋子连在一起的一方获胜。在我们这个项目中我们尝试使用自学习的方法训练出一套走五子棋的算法。 这个项目本身并无特别大的实用价值。我们的目的在于&#xff1a; 尝试自…...

统信UOS开发环境支持Electron

全面支持Electron开发环境,同时还提供了丰富的开发工具和开发资源,进一步提升工作效率。 文章目录 一、环境部署1. Electron应用开发介绍2. Electron开发环境安装安装Node.js和npm安装electron环境配置二、代码示例Electron开发案例三、常见问题一、环境部署 1. Electron应用…...

2024.11.09【BUG报错】| Fastuniq “Error in Reading pair-end FASTQ sequence!”解决方案

解决 Fastuniq 中“Error in Reading pair-end FASTQ sequence!”报错的指南 在使用 Fastuniq 进行高通量测序数据分析时&#xff0c;用户可能会遇到“Error in Reading pair-end FASTQ sequence!”的错误提示。这通常表明在读取配对的 FASTQ 序列时出现了问题。以下是一些可能…...

k8s组件原理

文章目录 1、kubernetes控制平面组件1、kube-apiserver2、etcd3、controller-manager4、schedule 2、node组件1、kubelet2、container runtime3、kube-proxy 3、附加组件1、kubedns2、dashboard 4、创建pod的原理 1、kubernetes控制平面组件 1、kube-apiserver 是公开kubernete…...

0基础跟德姆(dom)一起学AI 深度学习02-Pytorch基本使用

1 基本介绍 &#xff08;1&#xff09;什么是Pytorch? PyTorch是一个开源机器学习和深度学习框架。PyTorch 允许您使用 Python 代码操作和处理数据并编写深度学习算法&#xff0c;能够在强大的GPU加速基础上实现张量和动态神经网络。 PyTorch是一个基于 Python 的科学计算包…...

九州未来再度入选2024边缘计算TOP100

随着数智化转型的浪潮不断高涨&#xff0c;边缘计算作为推动各行业智能化升级的重要基石&#xff0c;正在成为支持万物智能化的关键点。近日&#xff0c;德本咨询(DBC)联合《互联网周刊》(CIW)与中国社会科学院信息化研究中心(CIS)&#xff0c;共同发布《2024边缘计算TOP100》榜…...

《物理化学学报》

《物理化学学报》主要刊载化学学科物理化学领域具有原创性实验和基础理论研究类文章。《物理化学学报》的办刊宗旨是引领物理化学前沿、服务国家战略需求&#xff0c;坚持正确的办刊方针&#xff0c;以促进学术交流及本学科发展为已任&#xff0c;为发现和培养科技人才服务&…...