当前位置: 首页 > news >正文

Pandas | 数据分析时将特定列转换为数字类型 float64 或 int64的方法

类型转换

    • 传统方法astype
      • 使用value_counts统计
      • 通过apply替换并使用astype转换
    • pd.to_numericx对连续变量进行转化⭐
      • 参数:
      • 返回值:
      • 示例代码:
    • isnull不会检查空字符串

  • 数据准备
    有一组数据信息如下,其中主要将TotalChargesMonthlyCharges两列进行类型转换,虽然通过函数info查看到类型已经是float64 和int64了,但是其中存在缺失值,我们的目的是找出缺失值 并填补进行类型转换
tcc.info()

在这里插入图片描述
在这里插入图片描述

传统方法astype

def find_index(data_col, val):"""查询某值在某列中第一次出现位置的索引,没有则返回-1:param data_col: 查询的列:param val: 具体取值"""val_list = [val]if data_col.isin(val_list).sum() == 0:index = -1else:index = data_col.isin(val_list).idxmax()# idxmax 方法将返回第一个匹配值的索引return index
# 查看空格第一次出现在哪一列的哪个位置:
for col in numeric_cols:print(find_index(tcc[col], ' '))

-1
488

# -1  代表月费用是没有问题的     488  代表总费用是有问题  且是空值
tcc["TotalCharges"][480:490]

在这里插入图片描述

# 确认是空值
tcc["TotalCharges"].iloc[488]

’ ’ 【有个空格的哦】

使用value_counts统计

tcc["TotalCharges"].value_counts()

在这里插入图片描述

通过apply替换并使用astype转换

tcc['TotalCharges']=tcc['TotalCharges'].apply(lambda x: x if x != ' ' else np.nan).astype(float)
tcc['MonthlyCharges']=tcc['MonthlyCharges'].astype(float)

根据上述方法,将空字符串替换为NaN,这就方便使用isnull函数进行后续处理

def missing (df):"""计算每一列的缺失值及占比"""missing_number = df.isnull().sum().sort_values(ascending=False)              # 每一列的缺失值求和后降序排序                  missing_percent = (df.isnull().sum()/df.isnull().count()).sort_values(ascending=False)          # 每一列缺失值占比missing_values = pd.concat([missing_number, missing_percent], axis=1, keys=['Missing_Number', 'Missing_Percent'])      # 合并为一个DataFramereturn missing_valuesmissing(tcc[numeric_cols])

在这里插入图片描述

tcc["TotalCharges"].isnull().sum()

11

# 输出缺失值位置对应的索引
tcc.index[tcc["TotalCharges"].isnull()].tolist()

[488, 753, 936, 1082, 1340, 3331, 3826, 4380, 5218, 6670, 6754]

pd.to_numericx对连续变量进行转化⭐

在这里插入图片描述

pd.to_numericpandas 库中的一个函数,用于将参数转换为数字类型。这个函数的默认返回类型是 float64int64,具体取决于提供的数据。以下是 pd.to_numeric 的一些关键用法和参数:

参数:

  • arg:要转换的参数,可以是标量、列表、元组、一维数组或 Series
  • errors:{‘ignore’, ‘raise’, ‘coerce’},默认为 ‘raise’。
    • 如果设置为 ‘raise’,则无效的解析会引发异常。
    • 如果设置为 ‘coerce’,则无效的解析会被设置为 NaN
    • 如果设置为 ‘ignore’,则无效的解析会返回输入的原始值。注意,‘ignore’ 在版本 2.2 中已被弃用,建议显式捕获异常。
  • downcast:默认为 None。
    • 可以是 ‘integer’、‘signed’、‘unsigned’ 或 ‘float’。
    • 如果不为 None,并且数据已成功转换为数值类型,则根据规则将结果数据转换为可能的最小数值类型。
  • dtype_backend:{‘numpy_nullable’, ‘pyarrow’},默认为 ‘numpy_nullable’。
    • ‘numpy_nullable’:返回支持空值的 DataFrame(默认)。
    • ‘pyarrow’:返回基于 pyarrow 的可空 ArrowDtype DataFrame

返回值:

  • 如果解析成功,返回数字。返回类型取决于输入。如果是 Series,则返回 Series;否则返回 ndarray

示例代码:

# 将 Series 转换为数值类型
s = pd.Series(['1.0', '2', -3])
pd.to_numeric(s)  # 返回 float64 类型

在这里插入图片描述

# 使用 downcast 参数将数值类型转换为更小的数值类型
pd.to_numeric(s, downcast='float')  # 返回 float32 类型

在这里插入图片描述

# 使用 errors 参数处理非数值数据
s = pd.Series([None, ' ', np.nan,'2', -3])
pd.to_numeric(s, errors='coerce')  # 非数值数据被替换为 NaN

在这里插入图片描述

pd.to_numeric 是处理数据转换时非常有用的工具,尤其是在数据清洗和预处理阶段,它可以帮助确保数据类型的一致性。更多详细信息和用法可以参考 pandas 官方文档 。

isnull不会检查空字符串

  • 没有空字符
s = pd.Series([None, np.nan, '2', -3])
s

在这里插入图片描述

s.isnull().sum()

2

  • 空字符串存在
t = pd.Series([None, ' ', '2', -3])
t

在这里插入图片描述

t.isnull()

0 True
1 False # 空字符当成有数据处理了
2 False
3 False
dtype: bool

t.isnull().sum()

1

相关文章:

Pandas | 数据分析时将特定列转换为数字类型 float64 或 int64的方法

类型转换 传统方法astype使用value_counts统计通过apply替换并使用astype转换 pd.to_numericx对连续变量进行转化⭐参数:返回值:示例代码: isnull不会检查空字符串 数据准备 有一组数据信息如下,其中主要将TotalCharges、MonthlyC…...

Elasticsearch的自定义查询方法到底是啥?

Elasticsearch主要的目的就是查询,默认提供的查询方法是查询全部,不满足我们的需求,可以定义查询方法 自定义查询方法 单条件查询 我们查询的需求:从title中查询所有包含"鼠标"这个分词的商品数据 SELECT * FROM it…...

Jenkins找不到maven构建项目

有的可能没有出现maven这个选项 解决办法:需要安装Maven项目插件 输入​Maven Integration plugin​...

怎么更换IP地址 改变IP归属地的三种方法

要更换自己的IP地址,您可以按照以下步骤进行操作: 1. 了解IP地址类型:首先,您需要了解您当前使用的IP地址类型。IP地址分为静态IP和动态IP两种。静态IP地址是固定的,使用第三方软件比如S深度IP转换器;而使用…...

C#-异步查询示例

文章速览 CancellationTokenSource 概述代码示例 坚持记录实属不易,希望友善多金的码友能够随手点一个赞。 共同创建氛围更加良好的开发者社区! 谢谢~ CancellationTokenSource 概述 使用System.Threading下的CancellationTokenSource类,进…...

设计模式之适配器模式(从多个MQ消息体中,抽取指定字段值场景)

前言 工作到3年左右很大一部分程序员都想提升自己的技术栈,开始尝试去阅读一些源码,例如Spring、Mybaits、Dubbo等,但读着读着发现越来越难懂,一会从这过来一会跑到那去。甚至怀疑自己技术太差,慢慢也就不愿意再触碰这…...

vue+exceljs前端下载、导出xlsx文件

首先安装插件 npm install exceljs file-saver第一种 简单导出 //页面引入 import ExcelJS from exceljs; import {saveAs} from file-saver; export default {methods: { /** 导出操作 */async handleExportFun() {let that this// 获取当前年月日 用户下载xlsx的文件名称设…...

算法定制LiteAIServer摄像机实时接入分析平台烟火检测算法的主要功能

在现代社会,随着人工智能技术的飞速发展,智能监控系统在公共安全领域的应用日益广泛。其中,烟火检测作为预防火灾的重要手段,其准确性和实时性对于减少火灾损失、保障人民生命财产安全具有重要意义。而算法定制LiteAIServer烟火检…...

用 Python 从零开始创建神经网络(二)

用 Python 从零开始创建神经网络(二) 引言1. Tensors, Arrays and Vectors:2. Dot Product and Vector Additiona. Dot Product (点积)b. Vector Addition (向量加法) 3. A Single Neuron with …...

嘉吉连续第七年亮相进博会

以“新质绿动,共赢未来”为主题,嘉吉连续第七年亮相进博会舞台。嘉吉带来了超过120款产品与解决方案,展示嘉吉在农业、食品、金融和工业等领域以客户为中心的创新成果。这些产品融合了嘉吉在相关领域的前瞻性思考,以及对本土市场的…...

设计模式之单列模式(7种单例模式案例,Effective Java 作者推荐枚举单例模式)

前言 在设计模式中按照不同的处理方式共包含三大类;创建型模式、结构型模式和行为模式,其中创建型模式目前已经介绍了其中的四个;工厂方法模式、抽象工厂模式、生成器模式和原型模式,除此之外还有最后一个单例模式。 单列模式介绍…...

多个服务器共享同一个Redis Cluster集群,并且可以使用Redisson分布式锁

Redisson 是一个高级的 Redis 客户端,它支持多种分布式 Java 对象和服务。其中之一就是分布式锁(RLock),它可以跨多个应用实例在多个服务器上使用同一个 Redis 集群,为这些实例提供锁服务。 当你在不同服务器上运行的…...

100种算法【Python版】第59篇——滤波算法之扩展卡尔曼滤波

本文目录 1 算法步骤2 算法示例2.1 示例描述2.2 python代码3 算法应用:机器人位姿估计扩展卡尔曼滤波(EKF)是一种处理非线性系统的状态估计算法。它通过线性化非线性系统来实现类似于线性卡尔曼滤波的效果。 1 算法步骤 (1)初始化 初始状态: x ^ 0 ∣ 0 \hat{x}_{0|0}...

制造业数字化转型的强大赋能平台:盘古信息IMS OS工软技术底座

在制造业数字化转型的浪潮中,技术底座的选择与实施至关重要。它不仅决定了企业数字化转型的深度与广度,还影响着企业的生产效率、成本控制和市场竞争力。盘古信息IMS OS作为一款强大的工软技术底座,凭借其高度模块化、可配置的设计理念&#…...

域名+服务器+Nginx+宝塔使用SSL证书配置HTTPS

前言 在我的前面文章里,有写过一篇文章 linux服务器宝塔从头部署别人可访问的网站 在这篇文章,有教学怎么使用宝塔和买的服务器的公网IP,以及教怎么打包vue和springboot去部署不用域名的网站让别人访问 那么,这篇文章将在这个…...

UnityAssetsBundle字体优化解决方案

Unity开发某个项目,打包后的apk包体已经高达1.25G了,这是非常离谱的。为了不影响用户体验,需要将apk包体缩小。因为项目本身不包含很多模型以及其他大型资源,排除法将AB包删除,发现app本身就100多M。 由此可以锁定是AB…...

Go的环境搭建以及GoLand安装教程

目录 一、开发环境Golang安装 二、配置环境变量 三、GoLand安装 四、Go 语言的 Hello World 一、开发环境Golang安装 官方网址: The Go Programming Language 1. 首先进入官网,点击Download,选择版本并进行下载: ​ ​ 2. …...

git clone,用https还是ssh

前言 在使用Git去克隆项目时,会遇到https和ssh等形式,这两种又有何种区别呢,本文将重点讨论在具体使用中的问题。 注:第一次使用Git 时,需要先设置全局用户名和邮箱,否则后续使用命令时会报错,也是提醒先添…...

量化交易系统开发-实时行情自动化交易-Okex行情交易数据

19年创业做过一年的量化交易但没有成功,作为交易系统的开发人员积累了一些经验,最近想重新研究交易系统,一边整理一边写出来一些思考供大家参考,也希望跟做量化的朋友有更多的交流和合作。 接下来聊聊基于Okex交易所API获取行情数…...

【重装系统后重新配置2】pycharm 终端无法激活conda环境

pycharm 终端无法激活 conda 环境,但是 Windows本地终端是可以激活的 原因是pycharm 默认的终端是 Windows PowerShell 解决方法有两个: 一、在设置里,修改为cmd 二、下面直接选择...

关于iview组件中使用 table , 绑定序号分页后序号从1开始的解决方案

问题描述:iview使用table 中type: "index",分页之后 ,索引还是从1开始,试过绑定后台返回数据的id, 这种方法可行,就是后台返回数据的每个页面id都不完全是按照从1开始的升序,因此百度了下,找到了…...

转转集团旗下首家二手多品类循环仓店“超级转转”开业

6月9日,国内领先的循环经济企业转转集团旗下首家二手多品类循环仓店“超级转转”正式开业。 转转集团创始人兼CEO黄炜、转转循环时尚发起人朱珠、转转集团COO兼红布林CEO胡伟琨、王府井集团副总裁祝捷等出席了开业剪彩仪式。 据「TMT星球」了解,“超级…...

工程地质软件市场:发展现状、趋势与策略建议

一、引言 在工程建设领域,准确把握地质条件是确保项目顺利推进和安全运营的关键。工程地质软件作为处理、分析、模拟和展示工程地质数据的重要工具,正发挥着日益重要的作用。它凭借强大的数据处理能力、三维建模功能、空间分析工具和可视化展示手段&…...

uniapp中使用aixos 报错

问题: 在uniapp中使用aixos,运行后报如下错误: AxiosError: There is no suitable adapter to dispatch the request since : - adapter xhr is not supported by the environment - adapter http is not available in the build 解决方案&…...

如何在网页里填写 PDF 表格?

有时候,你可能希望用户能在你的网站上填写 PDF 表单。然而,这件事并不简单,因为 PDF 并不是一种原生的网页格式。虽然浏览器可以显示 PDF 文件,但原生并不支持编辑或填写它们。更糟的是,如果你想收集表单数据&#xff…...

Spring是如何解决Bean的循环依赖:三级缓存机制

1、什么是 Bean 的循环依赖 在 Spring框架中,Bean 的循环依赖是指多个 Bean 之间‌互相持有对方引用‌,形成闭环依赖关系的现象。 多个 Bean 的依赖关系构成环形链路,例如: 双向依赖:Bean A 依赖 Bean B,同时 Bean B 也依赖 Bean A(A↔B)。链条循环: Bean A → Bean…...

人工智能(大型语言模型 LLMs)对不同学科的影响以及由此产生的新学习方式

今天是关于AI如何在教学中增强学生的学习体验,我把重要信息标红了。人文学科的价值被低估了 ⬇️ 转型与必要性 人工智能正在深刻地改变教育,这并非炒作,而是已经发生的巨大变革。教育机构和教育者不能忽视它,试图简单地禁止学生使…...

云原生安全实战:API网关Kong的鉴权与限流详解

🔥「炎码工坊」技术弹药已装填! 点击关注 → 解锁工业级干货【工具实测|项目避坑|源码燃烧指南】 一、基础概念 1. API网关(API Gateway) API网关是微服务架构中的核心组件,负责统一管理所有API的流量入口。它像一座…...

华为OD机试-最短木板长度-二分法(A卷,100分)

此题是一个最大化最小值的典型例题, 因为搜索范围是有界的,上界最大木板长度补充的全部木料长度,下界最小木板长度; 即left0,right10^6; 我们可以设置一个候选值x(mid),将木板的长度全部都补充到x,如果成功…...

echarts使用graphic强行给图增加一个边框(边框根据自己的图形大小设置)- 适用于无法使用dom的样式

pdf-lib https://blog.csdn.net/Shi_haoliu/article/details/148157624?spm1001.2014.3001.5501 为了完成在pdf中导出echarts图,如果边框加在dom上面,pdf-lib导出svg的时候并不会导出边框,所以只能在echarts图上面加边框 grid的边框是在图里…...