天塌了!!!SQL竟也可以做预测分析?| 商品零售额的预测
目录
0 问题背景
1 数据准备
2 问题解决
2.1 模型构建
(1)符号规定
(2)基本假设
(3)模型的分析与建立
2.2 模型求解
3 小结
0 问题背景
1960年—1985年全国社会商品零售额如图1 所示
表1全国社会商品零售额数据
年份 | 1960 | 1961 | 1962 | 1963 | 1964 | 1965 | 1966 | 1967 |
零售总额 | 696.6 | 607.7 | 604 | 604.5 | 638.2 | 670.3 | 732.8 | 770.5 |
年份 | 1968 | 1969 | 1970 | 1971 | 1972 | 1973 | 1974 | 1975 |
零售总额 | 737.3 | 801.5 | 858 | 929.2 | 1023.3 | 1106.7 | 1163.6 | 1271.1 |
年份 | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 |
|
零售总额 | 1339.4 | 1432.8 | 1558.6 | 1800 | 2140 | 2350 | 2570 |
|
问题:试用三次指数平滑法预测1983年和1985年全国社会商品零售额?
1 数据准备
create table sale_amount as
select '1960' years, '696.6' sale_amount from dual union all
select '1961' years, '607.7' sale_amount from dual union all
select '1962' years, '604' sale_amount from dual union all
select '1963' years, '604.5' sale_amount from dual union all
select '1964' years, '638.2' sale_amount from dual union all
select '1965' years, '670.3' sale_amount from dual union all
select '1966' years, '732.8' sale_amount from dual union all
select '1967' years, '770.5' sale_amount from dual union all
select '1968' years, '737.3' sale_amount from dual union all
select '1969' years, '801.5' sale_amount from dual union all
select '1970' years, '858' sale_amount from dual union all
select '1971' years, '929.2' sale_amount from dual union all
select '1972' years, '1023.3' sale_amount from dual union all
select '1973' years, '1106.7' sale_amount from dual union all
select '1974' years, '1163.6' sale_amount from dual union all
select '1975' years, '1271.1' sale_amount from dual union all
select '1976' years, '1339.4' sale_amount from dual union all
select '1977' years, '1432.8' sale_amount from dual union all
select '1978' years, '1558.6' sale_amount from dual union all
select '1979' years, '1800' sale_amount from dual union all
select '1980' years, '2140' sale_amount from dual union all
select '1981' years, '2350' sale_amount from dual union all
select '1982' years, '2570' sale_amount from dual
2 问题解决
2.1 模型构建
(1)符号规定
(2)基本假设
- 假设本问题考虑全社会商品零售额数据;
- 假设本问题只考虑销售,不考虑其余因素
- 假设本问题只考虑销售额总额,不考虑其余分支
(3)模型的分析与建立
令加权系数,则计算公式为
其中, 表示一次指数的平滑值;
表示二次次指数的平滑值;
表示三次指数的平滑值。初始值为
三次指数平滑法的预测模型为:
其中,
2.2 模型求解
步骤1:计算初始值
select years, sale_amount, last_value(init_sale_amount ignore nulls) over (order by YEARS) init_sale_amount, rn
from (select years, sale_amount, casewhen rn = 1 then cast(avg(sale_amount)over (order by years rows between current row and 2 following ) as decimal(18, 1)) end init_sale_amount, rnfrom (select years, sale_amount, row_number() over (order by years) rnfrom sale_amount) t) t
步骤2 :计算一次平滑值
with init as (select years, sale_amount, last_value(init_sale_amount ignore nulls) over (order by YEARS) init_sale_amount, rnfrom (select years, sale_amount, casewhen rn = 1 then cast(avg(sale_amount)over (order by years rows between current row and 2 following ) as decimal(18, 1)) end init_sale_amount, rnfrom (select years, sale_amount, row_number() over (order by years) rnfrom sale_amount) t) t
)
--计算一次平滑值, s1 as (select t1.years, t1.sale_amount, t1.init_sale_amount, t1.rn, cast(sum(case when t2.rn <= t1.rn then t2.sale_amount * power(0.7, t1.rn - t2.rn) else 0 end) * 0.3 +power(0.7, t1.rn) * t1.init_sale_amount as decimal(18, 4)) s1_p3from init t1,init t2group by t1.years, t1.sale_amount, t1.init_sale_amount, t1.rn
)
select * from s1 order by years;
步骤3:计算二次平滑值
with init as (select years, sale_amount, last_value(init_sale_amount ignore nulls) over (order by YEARS) init_sale_amount, rnfrom (select years, sale_amount, casewhen rn = 1 then cast(avg(sale_amount)over (order by years rows between current row and 2 following ) as decimal(18, 1)) end init_sale_amount, rnfrom (select years, sale_amount, row_number() over (order by years) rnfrom sale_amount) t) t
)
--计算一次平滑值, s1 as (select t1.years, t1.sale_amount, t1.init_sale_amount, t1.rn, cast(sum(case when t2.rn <= t1.rn then t2.sale_amount * power(0.7, t1.rn - t2.rn) else 0 end) * 0.3 +power(0.7, t1.rn) * t1.init_sale_amount as decimal(18, 4)) s1_p3from init t1,init t2group by t1.years, t1.sale_amount, t1.init_sale_amount, t1.rn
)
--计算二次平滑值
, s2 as (select t1.years, t1.sale_amount, t1.init_sale_amount, t1.rn, t1.s1_p3, cast(sum(case when t2.rn <= t1.rn then t2.s1_p3 * power(0.7, t1.rn - t2.rn) else 0 end) * 0.3 +power(0.7, t1.rn) * t1.init_sale_amount as decimal(18, 4)) s2_p3from s1 t1,s1 t2group by t1.years, t1.sale_amount, t1.init_sale_amount, t1.rn, t1.s1_p3
)
select * from s2 order by years;
步骤4:计算三次平滑值
with init as (select years, sale_amount, last_value(init_sale_amount ignore nulls) over (order by YEARS) init_sale_amount, rnfrom (select years, sale_amount, casewhen rn = 1 then cast(avg(sale_amount)over (order by years rows between current row and 2 following ) as decimal(18, 1)) end init_sale_amount, rnfrom (select years, sale_amount, row_number() over (order by years) rnfrom sale_amount) t) t
)
--计算一次平滑值, s1 as (select t1.years, t1.sale_amount, t1.init_sale_amount, t1.rn, cast(sum(case when t2.rn <= t1.rn then t2.sale_amount * power(0.7, t1.rn - t2.rn) else 0 end) * 0.3 +power(0.7, t1.rn) * t1.init_sale_amount as decimal(18, 4)) s1_p3from init t1,init t2group by t1.years, t1.sale_amount, t1.init_sale_amount, t1.rn
)
--计算二次平滑值
, s2 as (select t1.years, t1.sale_amount, t1.init_sale_amount, t1.rn, t1.s1_p3, cast(sum(case when t2.rn <= t1.rn then t2.s1_p3 * power(0.7, t1.rn - t2.rn) else 0 end) * 0.3 +power(0.7, t1.rn) * t1.init_sale_amount as decimal(18, 4)) s2_p3from s1 t1,s1 t2group by t1.years, t1.sale_amount, t1.init_sale_amount, t1.rn, t1.s1_p3
)--计算三次平滑值
,s3 as (select t1.years, t1.sale_amount, t1.init_sale_amount, t1.rn, t1.s2_p3, cast(sum(case when t2.rn <= t1.rn then t2.s2_p3 * power(0.7, t1.rn - t2.rn) else 0 end) * 0.3 +power(0.7, t1.rn) * t1.init_sale_amount as decimal(18, 4)) s3_p3from s2 t1,s2 t2group by t1.years, t1.sale_amount, t1.init_sale_amount, t1.rn, t1.s2_p3
)
select * from s3 order by years;
步骤4:计算二次函数模型系数
with init as (select years, sale_amount, last_value(init_sale_amount ignore nulls) over (order by YEARS) init_sale_amount, rnfrom (select years, sale_amount, casewhen rn = 1 then cast(avg(sale_amount)over (order by years rows between current row and 2 following ) as decimal(18, 1)) end init_sale_amount, rnfrom (select years, sale_amount, row_number() over (order by years) rnfrom sale_amount) t) t
)
--计算一次平滑值, s1 as (select t1.years, t1.sale_amount, t1.init_sale_amount, t1.rn, cast(sum(case when t2.rn <= t1.rn then t2.sale_amount * power(0.7, t1.rn - t2.rn) else 0 end) * 0.3 +power(0.7, t1.rn) * t1.init_sale_amount as decimal(18, 4)) s1_p3from init t1,init t2group by t1.years, t1.sale_amount, t1.init_sale_amount, t1.rn
)
--计算二次平滑值
, s2 as (select t1.years, t1.sale_amount, t1.init_sale_amount, t1.rn, t1.s1_p3, cast(sum(case when t2.rn <= t1.rn then t2.s1_p3 * power(0.7, t1.rn - t2.rn) else 0 end) * 0.3 +power(0.7, t1.rn) * t1.init_sale_amount as decimal(18, 4)) s2_p3from s1 t1,s1 t2group by t1.years, t1.sale_amount, t1.init_sale_amount, t1.rn, t1.s1_p3
)--计算三次平滑值
,s3 as (select t1.years, t1.sale_amount, t1.init_sale_amount, t1.rn, t1.s1_p3, t1.s2_p3, cast(sum(case when t2.rn <= t1.rn then t2.s2_p3 * power(0.7, t1.rn - t2.rn) else 0 end) * 0.3 +power(0.7, t1.rn) * t1.init_sale_amount as decimal(18, 4)) s3_p3from s2 t1,s2 t2group by t1.years, t1.sale_amount, t1.init_sale_amount, t1.rn, t1.s1_p3, t1.s2_p3
)--计算二次趋势模型系数
select years, sale_amount, init_sale_amount, rn, s1_p3, s2_p3, s3_p3, cast(case when rk=1 then 3*s1_p3 - 3*s2_p3 + s3_p3 else 0 end as decimal(18,4)) a_p3, cast(case when rk=1 then ((6-5*0.3)*s1_p3 - 2*(5-4*0.3)*s2_p3 + (4-3*0.3)*s3_p3 ) * 0.3/(2*power(0.7,2)) else 0 end as decimal(18,2)) b_p3, cast(case when rk=1 then (s1_p3 - 2*s2_p3 + s3_p3 ) * power(0.3,2)/(2*power(0.7,2)) else 0 end as decimal(18,4)) c_p3
from (select years, sale_amount, init_sale_amount, rn, s1_p3, s2_p3, s3_p3, row_number() over (order by rn desc) rkfrom s3) t
order by years
步骤5:构建二次预测模型,并预测结果值
由步骤4得知:
a=2572.2607,b=259.3367,c=8.9818
则预测模型为:
最后求得1983,1985年销售额的预测值分别是2840.5792亿元,3431.107亿元。
3 小结
本文针对商品零售额采用三次指数平滑法构建预测模型,文中选取加权系数 求解模型,并利用SQL语言进行实现,若实际中有相关需求,可针对加权系数再进行优化,利用RMSE均方根误差来使模型达到最优。
如果您觉得本文还不错,对你有帮助,那么不妨可以关注一下我的数字化建设实践之路专栏,这里的内容会更精彩。
专栏 原价99,现在活动价59.9,按照阶梯式增长,还差5个人上升到69.9,最终恢复到原价。
专栏优势:
(1)一次收费持续更新。
(2)实战中总结的SQL技巧,帮助SQLBOY 在SQL语言上有质的飞越,无论你应对业务难题及面试都会游刃有余【全网唯一讲SQL实战技巧,方法独特】
SQL很简单,可你却写不好?每天一点点,收获不止一点点-CSDN博客
(3)实战中数仓建模技巧总结,让你认识不一样的数仓。【数据建模+业务建模,不一样的认知体系】(如果只懂数据建模而不懂业务建模,数仓体系认知是不全面的)
(4)数字化建设当中遇到难题解决思路及问题思考。
我的专栏具体链接如下:
数字化建设通关指南_莫叫石榴姐的博客-CSDN博客
相关文章:

天塌了!!!SQL竟也可以做预测分析?| 商品零售额的预测
目录 0 问题背景 1 数据准备 2 问题解决 2.1 模型构建 (1)符号规定 (2)基本假设 (3)模型的分析与建立 2.2 模型求解 3 小结 0 问题背景 1960年—1985年全国社会商品零售额如图1 所示 表1全国社…...

VSCode本地C/C++环境配置
基本环境下载 1.我的系统是windows,自己先下载安装VSCode,网上视频实在太多,我建议跟着B站视频操作。 2.下载安装好后你需要明白:VSCode只是一个编辑工具,我们要写C/C代码得编译运行,所以我们要配置它在w…...

【智能算法应用】淘金优化算法求解二维路径规划问题
摘要 本文基于智能算法的淘金优化算法(Gold Panning Optimization, GPO)求解二维路径规划问题。该算法模拟淘金过程中个体寻找最优金矿路径的行为,利用适应度函数优化路径规划,能够在复杂环境下实现从起点到目标点的最优路径搜索…...

Linux挖矿病毒(kswapd0进程使cpu爆满)
一、摘要 事情起因:有台测试服务器很久没用了,突然监控到CPU飙到了95以上,并且阿里云服务器厂商还发送了通知消息,【阿里云】尊敬的xxh: 经检测您的阿里云服务(ECS实例)i-xxx存在挖矿活动。因此很明确服务器中挖矿病毒…...
【java】ArrayList与LinkedList的区别
目录 1. 说明2. 内部实现2.1 ArrayList2.2 LinkedList 3. 性能特点3.1 插入和删除操作3.2 访问操作3.1 遍历操作 4. 使用场景5. 扩容机制6. 空间开销 1. 说明 1.Java中的ArrayList和LinkedList是两种常用的集合实现类,都属于Java集合框架的一部分,但它们…...

【LangChain系列6】【Agent模块详解】
目录 前言一、LangChain1-1、介绍1-2、LangChain抽象出来的核心模块1-3、特点1-4、langchain解决的一些行业痛点1-5、安装 二、Agent模块详解2-0、Agent核心思想——React介绍2-0-1、React的介绍以及由来2-0-2、伪代码介绍React的执行顺序 2-1、Agent介绍2-1、Self ask with se…...
JavaScript Cookie 与 服务器生成的 Cookie 的区别与应用
JavaScript Cookie 与 服务器生成的 Cookie 的区别与应用 Cookie是一种甜点,同时也是web前端开发中一种非常常见且重要的技术,它用于在客户端和服务器之间存储和传递信息。用户身份验证、会话管理,还是用户个性化设置,都离不开Coo…...
深入了解Git、GitHub、GitLab及其应用技巧
在现代软件开发中,掌握版本控制系统(VCS)是至关重要的,其中Git是最流行的分布式版本控制工具之一。本文将详细介绍Git的用途及其基本操作,并深入探讨GitLab、GitHub、和Git Desktop的使用方法,同时总结Git的…...

ctfshow(316,317,318)--XSS漏洞--反射性XSS
反射型XSS相关知识 Web316 进入界面: 审计 显示是关于反射性XSS的题目。 思路 首先想到利用XSS平台解题,看其他师傅的wp提示flag是在cookie中。 当前页面的cookie是flagyou%20are%20not%20admin%20no%20flag。 但是这里我使用XSS平台,…...

Visual Studio2022版本的下载与安装
1-首先打开微软的官网,下面就是链接 下载 Visual Studio Tools - 免费安装 Windows、Mac、Linux免费下载 Visual Studio IDE 或 VS Code。 在 Windows、Mac 上试用 Visual Studio Professional 或企业版。https://visualstudio.microsoft.com/zh-hans/downloads/?…...
nodeJS程序如何引入依赖包
在 Node.js 运行时中引入依赖包通常通过以下步骤完成: 初始化项目: 首先,你需要初始化一个 Node.js 项目。如果你还没有 package.json 文件,可以使用 npm init 命令来创建它。运行以下命令并按提示输入相关信息: npm i…...

建网站怎么建?只需几个步骤
在这个网络飞速发展的时代,越来越多的人都渴望拥有自己的网站。然而,对于大多数新手来说,如何建立自己的网站可能充满了挑战。本文将为您详细介绍建网站的关键步骤,让您能够轻松搭建自己的网站。 选择适合的建站工具 虽然市面上有…...
机器学习课程总结(个人向)
前言 通过看课件PPT整理的笔记,没有截图 由于大部分内容已经耳熟能详了,故记录比较简略,只记录了一些概念和需要记忆的地方。 里面有较多的个人观点,未必正确。如有错误,还请各位大佬指正 正文 绪论 机器学习的定…...
数据分析-43-时间序列预测之深度学习方法GRU
文章目录 1 时间序列1.1 时间序列特点1.1.1 原始信号1.1.2 趋势1.1.3 季节性和周期性1.1.4 噪声1.2 时间序列预测方法1.2.1 统计方法1.2.2 机器学习方法1.2.3 深度学习方法2 GRU2.1 模拟数据2.2 数据归一化2.3 生成滞后特征2.4 切分训练集和测试集2.5 模型训练2.6 模型预测3 参…...

Pandas | 数据分析时将特定列转换为数字类型 float64 或 int64的方法
类型转换 传统方法astype使用value_counts统计通过apply替换并使用astype转换 pd.to_numericx对连续变量进行转化⭐参数:返回值:示例代码: isnull不会检查空字符串 数据准备 有一组数据信息如下,其中主要将TotalCharges、MonthlyC…...

Elasticsearch的自定义查询方法到底是啥?
Elasticsearch主要的目的就是查询,默认提供的查询方法是查询全部,不满足我们的需求,可以定义查询方法 自定义查询方法 单条件查询 我们查询的需求:从title中查询所有包含"鼠标"这个分词的商品数据 SELECT * FROM it…...

Jenkins找不到maven构建项目
有的可能没有出现maven这个选项 解决办法:需要安装Maven项目插件 输入Maven Integration plugin...
怎么更换IP地址 改变IP归属地的三种方法
要更换自己的IP地址,您可以按照以下步骤进行操作: 1. 了解IP地址类型:首先,您需要了解您当前使用的IP地址类型。IP地址分为静态IP和动态IP两种。静态IP地址是固定的,使用第三方软件比如S深度IP转换器;而使用…...
C#-异步查询示例
文章速览 CancellationTokenSource 概述代码示例 坚持记录实属不易,希望友善多金的码友能够随手点一个赞。 共同创建氛围更加良好的开发者社区! 谢谢~ CancellationTokenSource 概述 使用System.Threading下的CancellationTokenSource类,进…...

设计模式之适配器模式(从多个MQ消息体中,抽取指定字段值场景)
前言 工作到3年左右很大一部分程序员都想提升自己的技术栈,开始尝试去阅读一些源码,例如Spring、Mybaits、Dubbo等,但读着读着发现越来越难懂,一会从这过来一会跑到那去。甚至怀疑自己技术太差,慢慢也就不愿意再触碰这…...

springboot 百货中心供应链管理系统小程序
一、前言 随着我国经济迅速发展,人们对手机的需求越来越大,各种手机软件也都在被广泛应用,但是对于手机进行数据信息管理,对于手机的各种软件也是备受用户的喜爱,百货中心供应链管理系统被用户普遍使用,为方…...
椭圆曲线密码学(ECC)
一、ECC算法概述 椭圆曲线密码学(Elliptic Curve Cryptography)是基于椭圆曲线数学理论的公钥密码系统,由Neal Koblitz和Victor Miller在1985年独立提出。相比RSA,ECC在相同安全强度下密钥更短(256位ECC ≈ 3072位RSA…...
R语言AI模型部署方案:精准离线运行详解
R语言AI模型部署方案:精准离线运行详解 一、项目概述 本文将构建一个完整的R语言AI部署解决方案,实现鸢尾花分类模型的训练、保存、离线部署和预测功能。核心特点: 100%离线运行能力自包含环境依赖生产级错误处理跨平台兼容性模型版本管理# 文件结构说明 Iris_AI_Deployme…...

基于ASP.NET+ SQL Server实现(Web)医院信息管理系统
医院信息管理系统 1. 课程设计内容 在 visual studio 2017 平台上,开发一个“医院信息管理系统”Web 程序。 2. 课程设计目的 综合运用 c#.net 知识,在 vs 2017 平台上,进行 ASP.NET 应用程序和简易网站的开发;初步熟悉开发一…...

3.3.1_1 检错编码(奇偶校验码)
从这节课开始,我们会探讨数据链路层的差错控制功能,差错控制功能的主要目标是要发现并且解决一个帧内部的位错误,我们需要使用特殊的编码技术去发现帧内部的位错误,当我们发现位错误之后,通常来说有两种解决方案。第一…...

(转)什么是DockerCompose?它有什么作用?
一、什么是DockerCompose? DockerCompose可以基于Compose文件帮我们快速的部署分布式应用,而无需手动一个个创建和运行容器。 Compose文件是一个文本文件,通过指令定义集群中的每个容器如何运行。 DockerCompose就是把DockerFile转换成指令去运行。 …...

如何理解 IP 数据报中的 TTL?
目录 前言理解 前言 面试灵魂一问:说说对 IP 数据报中 TTL 的理解?我们都知道,IP 数据报由首部和数据两部分组成,首部又分为两部分:固定部分和可变部分,共占 20 字节,而即将讨论的 TTL 就位于首…...

接口自动化测试:HttpRunner基础
相关文档 HttpRunner V3.x中文文档 HttpRunner 用户指南 使用HttpRunner 3.x实现接口自动化测试 HttpRunner介绍 HttpRunner 是一个开源的 API 测试工具,支持 HTTP(S)/HTTP2/WebSocket/RPC 等网络协议,涵盖接口测试、性能测试、数字体验监测等测试类型…...

STM32---外部32.768K晶振(LSE)无法起振问题
晶振是否起振主要就检查两个1、晶振与MCU是否兼容;2、晶振的负载电容是否匹配 目录 一、判断晶振与MCU是否兼容 二、判断负载电容是否匹配 1. 晶振负载电容(CL)与匹配电容(CL1、CL2)的关系 2. 如何选择 CL1 和 CL…...
用鸿蒙HarmonyOS5实现中国象棋小游戏的过程
下面是一个基于鸿蒙OS (HarmonyOS) 的中国象棋小游戏的实现代码。这个实现使用Java语言和鸿蒙的Ability框架。 1. 项目结构 /src/main/java/com/example/chinesechess/├── MainAbilitySlice.java // 主界面逻辑├── ChessView.java // 游戏视图和逻辑├──…...