免费推广网站怎么做/百度推广方案怎么写
目录
0 问题背景
1 数据准备
2 问题解决
2.1 模型构建
(1)符号规定
(2)基本假设
(3)模型的分析与建立
2.2 模型求解
3 小结
0 问题背景
1960年—1985年全国社会商品零售额如图1 所示
表1全国社会商品零售额数据
年份 | 1960 | 1961 | 1962 | 1963 | 1964 | 1965 | 1966 | 1967 |
零售总额 | 696.6 | 607.7 | 604 | 604.5 | 638.2 | 670.3 | 732.8 | 770.5 |
年份 | 1968 | 1969 | 1970 | 1971 | 1972 | 1973 | 1974 | 1975 |
零售总额 | 737.3 | 801.5 | 858 | 929.2 | 1023.3 | 1106.7 | 1163.6 | 1271.1 |
年份 | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 |
|
零售总额 | 1339.4 | 1432.8 | 1558.6 | 1800 | 2140 | 2350 | 2570 |
|
问题:试用三次指数平滑法预测1983年和1985年全国社会商品零售额?
1 数据准备
create table sale_amount as
select '1960' years, '696.6' sale_amount from dual union all
select '1961' years, '607.7' sale_amount from dual union all
select '1962' years, '604' sale_amount from dual union all
select '1963' years, '604.5' sale_amount from dual union all
select '1964' years, '638.2' sale_amount from dual union all
select '1965' years, '670.3' sale_amount from dual union all
select '1966' years, '732.8' sale_amount from dual union all
select '1967' years, '770.5' sale_amount from dual union all
select '1968' years, '737.3' sale_amount from dual union all
select '1969' years, '801.5' sale_amount from dual union all
select '1970' years, '858' sale_amount from dual union all
select '1971' years, '929.2' sale_amount from dual union all
select '1972' years, '1023.3' sale_amount from dual union all
select '1973' years, '1106.7' sale_amount from dual union all
select '1974' years, '1163.6' sale_amount from dual union all
select '1975' years, '1271.1' sale_amount from dual union all
select '1976' years, '1339.4' sale_amount from dual union all
select '1977' years, '1432.8' sale_amount from dual union all
select '1978' years, '1558.6' sale_amount from dual union all
select '1979' years, '1800' sale_amount from dual union all
select '1980' years, '2140' sale_amount from dual union all
select '1981' years, '2350' sale_amount from dual union all
select '1982' years, '2570' sale_amount from dual
2 问题解决
2.1 模型构建
(1)符号规定
(2)基本假设
- 假设本问题考虑全社会商品零售额数据;
- 假设本问题只考虑销售,不考虑其余因素
- 假设本问题只考虑销售额总额,不考虑其余分支
(3)模型的分析与建立
令加权系数,则计算公式为
其中, 表示一次指数的平滑值;
表示二次次指数的平滑值;
表示三次指数的平滑值。初始值为
三次指数平滑法的预测模型为:
其中,
2.2 模型求解
步骤1:计算初始值
select years, sale_amount, last_value(init_sale_amount ignore nulls) over (order by YEARS) init_sale_amount, rn
from (select years, sale_amount, casewhen rn = 1 then cast(avg(sale_amount)over (order by years rows between current row and 2 following ) as decimal(18, 1)) end init_sale_amount, rnfrom (select years, sale_amount, row_number() over (order by years) rnfrom sale_amount) t) t
步骤2 :计算一次平滑值
with init as (select years, sale_amount, last_value(init_sale_amount ignore nulls) over (order by YEARS) init_sale_amount, rnfrom (select years, sale_amount, casewhen rn = 1 then cast(avg(sale_amount)over (order by years rows between current row and 2 following ) as decimal(18, 1)) end init_sale_amount, rnfrom (select years, sale_amount, row_number() over (order by years) rnfrom sale_amount) t) t
)
--计算一次平滑值, s1 as (select t1.years, t1.sale_amount, t1.init_sale_amount, t1.rn, cast(sum(case when t2.rn <= t1.rn then t2.sale_amount * power(0.7, t1.rn - t2.rn) else 0 end) * 0.3 +power(0.7, t1.rn) * t1.init_sale_amount as decimal(18, 4)) s1_p3from init t1,init t2group by t1.years, t1.sale_amount, t1.init_sale_amount, t1.rn
)
select * from s1 order by years;
步骤3:计算二次平滑值
with init as (select years, sale_amount, last_value(init_sale_amount ignore nulls) over (order by YEARS) init_sale_amount, rnfrom (select years, sale_amount, casewhen rn = 1 then cast(avg(sale_amount)over (order by years rows between current row and 2 following ) as decimal(18, 1)) end init_sale_amount, rnfrom (select years, sale_amount, row_number() over (order by years) rnfrom sale_amount) t) t
)
--计算一次平滑值, s1 as (select t1.years, t1.sale_amount, t1.init_sale_amount, t1.rn, cast(sum(case when t2.rn <= t1.rn then t2.sale_amount * power(0.7, t1.rn - t2.rn) else 0 end) * 0.3 +power(0.7, t1.rn) * t1.init_sale_amount as decimal(18, 4)) s1_p3from init t1,init t2group by t1.years, t1.sale_amount, t1.init_sale_amount, t1.rn
)
--计算二次平滑值
, s2 as (select t1.years, t1.sale_amount, t1.init_sale_amount, t1.rn, t1.s1_p3, cast(sum(case when t2.rn <= t1.rn then t2.s1_p3 * power(0.7, t1.rn - t2.rn) else 0 end) * 0.3 +power(0.7, t1.rn) * t1.init_sale_amount as decimal(18, 4)) s2_p3from s1 t1,s1 t2group by t1.years, t1.sale_amount, t1.init_sale_amount, t1.rn, t1.s1_p3
)
select * from s2 order by years;
步骤4:计算三次平滑值
with init as (select years, sale_amount, last_value(init_sale_amount ignore nulls) over (order by YEARS) init_sale_amount, rnfrom (select years, sale_amount, casewhen rn = 1 then cast(avg(sale_amount)over (order by years rows between current row and 2 following ) as decimal(18, 1)) end init_sale_amount, rnfrom (select years, sale_amount, row_number() over (order by years) rnfrom sale_amount) t) t
)
--计算一次平滑值, s1 as (select t1.years, t1.sale_amount, t1.init_sale_amount, t1.rn, cast(sum(case when t2.rn <= t1.rn then t2.sale_amount * power(0.7, t1.rn - t2.rn) else 0 end) * 0.3 +power(0.7, t1.rn) * t1.init_sale_amount as decimal(18, 4)) s1_p3from init t1,init t2group by t1.years, t1.sale_amount, t1.init_sale_amount, t1.rn
)
--计算二次平滑值
, s2 as (select t1.years, t1.sale_amount, t1.init_sale_amount, t1.rn, t1.s1_p3, cast(sum(case when t2.rn <= t1.rn then t2.s1_p3 * power(0.7, t1.rn - t2.rn) else 0 end) * 0.3 +power(0.7, t1.rn) * t1.init_sale_amount as decimal(18, 4)) s2_p3from s1 t1,s1 t2group by t1.years, t1.sale_amount, t1.init_sale_amount, t1.rn, t1.s1_p3
)--计算三次平滑值
,s3 as (select t1.years, t1.sale_amount, t1.init_sale_amount, t1.rn, t1.s2_p3, cast(sum(case when t2.rn <= t1.rn then t2.s2_p3 * power(0.7, t1.rn - t2.rn) else 0 end) * 0.3 +power(0.7, t1.rn) * t1.init_sale_amount as decimal(18, 4)) s3_p3from s2 t1,s2 t2group by t1.years, t1.sale_amount, t1.init_sale_amount, t1.rn, t1.s2_p3
)
select * from s3 order by years;
步骤4:计算二次函数模型系数
with init as (select years, sale_amount, last_value(init_sale_amount ignore nulls) over (order by YEARS) init_sale_amount, rnfrom (select years, sale_amount, casewhen rn = 1 then cast(avg(sale_amount)over (order by years rows between current row and 2 following ) as decimal(18, 1)) end init_sale_amount, rnfrom (select years, sale_amount, row_number() over (order by years) rnfrom sale_amount) t) t
)
--计算一次平滑值, s1 as (select t1.years, t1.sale_amount, t1.init_sale_amount, t1.rn, cast(sum(case when t2.rn <= t1.rn then t2.sale_amount * power(0.7, t1.rn - t2.rn) else 0 end) * 0.3 +power(0.7, t1.rn) * t1.init_sale_amount as decimal(18, 4)) s1_p3from init t1,init t2group by t1.years, t1.sale_amount, t1.init_sale_amount, t1.rn
)
--计算二次平滑值
, s2 as (select t1.years, t1.sale_amount, t1.init_sale_amount, t1.rn, t1.s1_p3, cast(sum(case when t2.rn <= t1.rn then t2.s1_p3 * power(0.7, t1.rn - t2.rn) else 0 end) * 0.3 +power(0.7, t1.rn) * t1.init_sale_amount as decimal(18, 4)) s2_p3from s1 t1,s1 t2group by t1.years, t1.sale_amount, t1.init_sale_amount, t1.rn, t1.s1_p3
)--计算三次平滑值
,s3 as (select t1.years, t1.sale_amount, t1.init_sale_amount, t1.rn, t1.s1_p3, t1.s2_p3, cast(sum(case when t2.rn <= t1.rn then t2.s2_p3 * power(0.7, t1.rn - t2.rn) else 0 end) * 0.3 +power(0.7, t1.rn) * t1.init_sale_amount as decimal(18, 4)) s3_p3from s2 t1,s2 t2group by t1.years, t1.sale_amount, t1.init_sale_amount, t1.rn, t1.s1_p3, t1.s2_p3
)--计算二次趋势模型系数
select years, sale_amount, init_sale_amount, rn, s1_p3, s2_p3, s3_p3, cast(case when rk=1 then 3*s1_p3 - 3*s2_p3 + s3_p3 else 0 end as decimal(18,4)) a_p3, cast(case when rk=1 then ((6-5*0.3)*s1_p3 - 2*(5-4*0.3)*s2_p3 + (4-3*0.3)*s3_p3 ) * 0.3/(2*power(0.7,2)) else 0 end as decimal(18,2)) b_p3, cast(case when rk=1 then (s1_p3 - 2*s2_p3 + s3_p3 ) * power(0.3,2)/(2*power(0.7,2)) else 0 end as decimal(18,4)) c_p3
from (select years, sale_amount, init_sale_amount, rn, s1_p3, s2_p3, s3_p3, row_number() over (order by rn desc) rkfrom s3) t
order by years
步骤5:构建二次预测模型,并预测结果值
由步骤4得知:
a=2572.2607,b=259.3367,c=8.9818
则预测模型为:
最后求得1983,1985年销售额的预测值分别是2840.5792亿元,3431.107亿元。
3 小结
本文针对商品零售额采用三次指数平滑法构建预测模型,文中选取加权系数 求解模型,并利用SQL语言进行实现,若实际中有相关需求,可针对加权系数再进行优化,利用RMSE均方根误差来使模型达到最优。
如果您觉得本文还不错,对你有帮助,那么不妨可以关注一下我的数字化建设实践之路专栏,这里的内容会更精彩。
专栏 原价99,现在活动价59.9,按照阶梯式增长,还差5个人上升到69.9,最终恢复到原价。
专栏优势:
(1)一次收费持续更新。
(2)实战中总结的SQL技巧,帮助SQLBOY 在SQL语言上有质的飞越,无论你应对业务难题及面试都会游刃有余【全网唯一讲SQL实战技巧,方法独特】
SQL很简单,可你却写不好?每天一点点,收获不止一点点-CSDN博客
(3)实战中数仓建模技巧总结,让你认识不一样的数仓。【数据建模+业务建模,不一样的认知体系】(如果只懂数据建模而不懂业务建模,数仓体系认知是不全面的)
(4)数字化建设当中遇到难题解决思路及问题思考。
我的专栏具体链接如下:
数字化建设通关指南_莫叫石榴姐的博客-CSDN博客
相关文章:

天塌了!!!SQL竟也可以做预测分析?| 商品零售额的预测
目录 0 问题背景 1 数据准备 2 问题解决 2.1 模型构建 (1)符号规定 (2)基本假设 (3)模型的分析与建立 2.2 模型求解 3 小结 0 问题背景 1960年—1985年全国社会商品零售额如图1 所示 表1全国社…...

VSCode本地C/C++环境配置
基本环境下载 1.我的系统是windows,自己先下载安装VSCode,网上视频实在太多,我建议跟着B站视频操作。 2.下载安装好后你需要明白:VSCode只是一个编辑工具,我们要写C/C代码得编译运行,所以我们要配置它在w…...

【智能算法应用】淘金优化算法求解二维路径规划问题
摘要 本文基于智能算法的淘金优化算法(Gold Panning Optimization, GPO)求解二维路径规划问题。该算法模拟淘金过程中个体寻找最优金矿路径的行为,利用适应度函数优化路径规划,能够在复杂环境下实现从起点到目标点的最优路径搜索…...

Linux挖矿病毒(kswapd0进程使cpu爆满)
一、摘要 事情起因:有台测试服务器很久没用了,突然监控到CPU飙到了95以上,并且阿里云服务器厂商还发送了通知消息,【阿里云】尊敬的xxh: 经检测您的阿里云服务(ECS实例)i-xxx存在挖矿活动。因此很明确服务器中挖矿病毒…...

【java】ArrayList与LinkedList的区别
目录 1. 说明2. 内部实现2.1 ArrayList2.2 LinkedList 3. 性能特点3.1 插入和删除操作3.2 访问操作3.1 遍历操作 4. 使用场景5. 扩容机制6. 空间开销 1. 说明 1.Java中的ArrayList和LinkedList是两种常用的集合实现类,都属于Java集合框架的一部分,但它们…...

【LangChain系列6】【Agent模块详解】
目录 前言一、LangChain1-1、介绍1-2、LangChain抽象出来的核心模块1-3、特点1-4、langchain解决的一些行业痛点1-5、安装 二、Agent模块详解2-0、Agent核心思想——React介绍2-0-1、React的介绍以及由来2-0-2、伪代码介绍React的执行顺序 2-1、Agent介绍2-1、Self ask with se…...

JavaScript Cookie 与 服务器生成的 Cookie 的区别与应用
JavaScript Cookie 与 服务器生成的 Cookie 的区别与应用 Cookie是一种甜点,同时也是web前端开发中一种非常常见且重要的技术,它用于在客户端和服务器之间存储和传递信息。用户身份验证、会话管理,还是用户个性化设置,都离不开Coo…...

深入了解Git、GitHub、GitLab及其应用技巧
在现代软件开发中,掌握版本控制系统(VCS)是至关重要的,其中Git是最流行的分布式版本控制工具之一。本文将详细介绍Git的用途及其基本操作,并深入探讨GitLab、GitHub、和Git Desktop的使用方法,同时总结Git的…...

ctfshow(316,317,318)--XSS漏洞--反射性XSS
反射型XSS相关知识 Web316 进入界面: 审计 显示是关于反射性XSS的题目。 思路 首先想到利用XSS平台解题,看其他师傅的wp提示flag是在cookie中。 当前页面的cookie是flagyou%20are%20not%20admin%20no%20flag。 但是这里我使用XSS平台,…...

Visual Studio2022版本的下载与安装
1-首先打开微软的官网,下面就是链接 下载 Visual Studio Tools - 免费安装 Windows、Mac、Linux免费下载 Visual Studio IDE 或 VS Code。 在 Windows、Mac 上试用 Visual Studio Professional 或企业版。https://visualstudio.microsoft.com/zh-hans/downloads/?…...

nodeJS程序如何引入依赖包
在 Node.js 运行时中引入依赖包通常通过以下步骤完成: 初始化项目: 首先,你需要初始化一个 Node.js 项目。如果你还没有 package.json 文件,可以使用 npm init 命令来创建它。运行以下命令并按提示输入相关信息: npm i…...

建网站怎么建?只需几个步骤
在这个网络飞速发展的时代,越来越多的人都渴望拥有自己的网站。然而,对于大多数新手来说,如何建立自己的网站可能充满了挑战。本文将为您详细介绍建网站的关键步骤,让您能够轻松搭建自己的网站。 选择适合的建站工具 虽然市面上有…...

机器学习课程总结(个人向)
前言 通过看课件PPT整理的笔记,没有截图 由于大部分内容已经耳熟能详了,故记录比较简略,只记录了一些概念和需要记忆的地方。 里面有较多的个人观点,未必正确。如有错误,还请各位大佬指正 正文 绪论 机器学习的定…...

数据分析-43-时间序列预测之深度学习方法GRU
文章目录 1 时间序列1.1 时间序列特点1.1.1 原始信号1.1.2 趋势1.1.3 季节性和周期性1.1.4 噪声1.2 时间序列预测方法1.2.1 统计方法1.2.2 机器学习方法1.2.3 深度学习方法2 GRU2.1 模拟数据2.2 数据归一化2.3 生成滞后特征2.4 切分训练集和测试集2.5 模型训练2.6 模型预测3 参…...

Pandas | 数据分析时将特定列转换为数字类型 float64 或 int64的方法
类型转换 传统方法astype使用value_counts统计通过apply替换并使用astype转换 pd.to_numericx对连续变量进行转化⭐参数:返回值:示例代码: isnull不会检查空字符串 数据准备 有一组数据信息如下,其中主要将TotalCharges、MonthlyC…...

Elasticsearch的自定义查询方法到底是啥?
Elasticsearch主要的目的就是查询,默认提供的查询方法是查询全部,不满足我们的需求,可以定义查询方法 自定义查询方法 单条件查询 我们查询的需求:从title中查询所有包含"鼠标"这个分词的商品数据 SELECT * FROM it…...

Jenkins找不到maven构建项目
有的可能没有出现maven这个选项 解决办法:需要安装Maven项目插件 输入Maven Integration plugin...

怎么更换IP地址 改变IP归属地的三种方法
要更换自己的IP地址,您可以按照以下步骤进行操作: 1. 了解IP地址类型:首先,您需要了解您当前使用的IP地址类型。IP地址分为静态IP和动态IP两种。静态IP地址是固定的,使用第三方软件比如S深度IP转换器;而使用…...

C#-异步查询示例
文章速览 CancellationTokenSource 概述代码示例 坚持记录实属不易,希望友善多金的码友能够随手点一个赞。 共同创建氛围更加良好的开发者社区! 谢谢~ CancellationTokenSource 概述 使用System.Threading下的CancellationTokenSource类,进…...

设计模式之适配器模式(从多个MQ消息体中,抽取指定字段值场景)
前言 工作到3年左右很大一部分程序员都想提升自己的技术栈,开始尝试去阅读一些源码,例如Spring、Mybaits、Dubbo等,但读着读着发现越来越难懂,一会从这过来一会跑到那去。甚至怀疑自己技术太差,慢慢也就不愿意再触碰这…...

vue+exceljs前端下载、导出xlsx文件
首先安装插件 npm install exceljs file-saver第一种 简单导出 //页面引入 import ExcelJS from exceljs; import {saveAs} from file-saver; export default {methods: { /** 导出操作 */async handleExportFun() {let that this// 获取当前年月日 用户下载xlsx的文件名称设…...

算法定制LiteAIServer摄像机实时接入分析平台烟火检测算法的主要功能
在现代社会,随着人工智能技术的飞速发展,智能监控系统在公共安全领域的应用日益广泛。其中,烟火检测作为预防火灾的重要手段,其准确性和实时性对于减少火灾损失、保障人民生命财产安全具有重要意义。而算法定制LiteAIServer烟火检…...

用 Python 从零开始创建神经网络(二)
用 Python 从零开始创建神经网络(二) 引言1. Tensors, Arrays and Vectors:2. Dot Product and Vector Additiona. Dot Product (点积)b. Vector Addition (向量加法) 3. A Single Neuron with …...

嘉吉连续第七年亮相进博会
以“新质绿动,共赢未来”为主题,嘉吉连续第七年亮相进博会舞台。嘉吉带来了超过120款产品与解决方案,展示嘉吉在农业、食品、金融和工业等领域以客户为中心的创新成果。这些产品融合了嘉吉在相关领域的前瞻性思考,以及对本土市场的…...

设计模式之单列模式(7种单例模式案例,Effective Java 作者推荐枚举单例模式)
前言 在设计模式中按照不同的处理方式共包含三大类;创建型模式、结构型模式和行为模式,其中创建型模式目前已经介绍了其中的四个;工厂方法模式、抽象工厂模式、生成器模式和原型模式,除此之外还有最后一个单例模式。 单列模式介绍…...

多个服务器共享同一个Redis Cluster集群,并且可以使用Redisson分布式锁
Redisson 是一个高级的 Redis 客户端,它支持多种分布式 Java 对象和服务。其中之一就是分布式锁(RLock),它可以跨多个应用实例在多个服务器上使用同一个 Redis 集群,为这些实例提供锁服务。 当你在不同服务器上运行的…...

100种算法【Python版】第59篇——滤波算法之扩展卡尔曼滤波
本文目录 1 算法步骤2 算法示例2.1 示例描述2.2 python代码3 算法应用:机器人位姿估计扩展卡尔曼滤波(EKF)是一种处理非线性系统的状态估计算法。它通过线性化非线性系统来实现类似于线性卡尔曼滤波的效果。 1 算法步骤 (1)初始化 初始状态: x ^ 0 ∣ 0 \hat{x}_{0|0}...

制造业数字化转型的强大赋能平台:盘古信息IMS OS工软技术底座
在制造业数字化转型的浪潮中,技术底座的选择与实施至关重要。它不仅决定了企业数字化转型的深度与广度,还影响着企业的生产效率、成本控制和市场竞争力。盘古信息IMS OS作为一款强大的工软技术底座,凭借其高度模块化、可配置的设计理念&#…...

域名+服务器+Nginx+宝塔使用SSL证书配置HTTPS
前言 在我的前面文章里,有写过一篇文章 linux服务器宝塔从头部署别人可访问的网站 在这篇文章,有教学怎么使用宝塔和买的服务器的公网IP,以及教怎么打包vue和springboot去部署不用域名的网站让别人访问 那么,这篇文章将在这个…...

UnityAssetsBundle字体优化解决方案
Unity开发某个项目,打包后的apk包体已经高达1.25G了,这是非常离谱的。为了不影响用户体验,需要将apk包体缩小。因为项目本身不包含很多模型以及其他大型资源,排除法将AB包删除,发现app本身就100多M。 由此可以锁定是AB…...