当前位置: 首页 > news >正文

嵌入式硬件实战基础篇(一)-STM32+DAC0832 可调信号发生器-产生方波-三角波-正弦波

引言:本内容主要用作于学习巩固嵌入式硬件内容知识,用于想提升下述能力,针对学习STM32与DAC0832产生波形以及波形转换,对于硬件的降压和对于前面硬件篇的实际运用,针对仿真的使用,具体如下:

设计目标要求:结合MCU设计制作一个可以产生方波-三角波-正弦波的信号发生器。
具体要求:输出波形频率 范围为20Hz-20kHz 且连续可调;输出波形幅值连续可调;

整体工程已提供在文章末尾。

目录

一、硬件设计

1.电路原理分析

1.1.DAC0832 电路原理分析

1.2.DCDC 电路原理分析

2.原理图与PCB设计

2.1.原理图分析

2.2.PCB分析

二、软件设计

1. sine_wave 函数(输出正弦波)

2. tri_wave 函数(输出三角波)

3. squ_wave 函数(输出方波)

4. set_time 函数(设置定时器周期)

5. HAL_GPIO_EXTI_Callback 函数(外部中断回调)

6. HAL_TIM_PeriodElapsedCallback 函数(定时器溢出回调)

三、仿真验证


一、硬件设计

1.电路原理分析

硬件整体由:主控(STM32F103C6T6)、显示单元(LCD1602)、输入单元(按键)、DCDC模块单元、波形发生单元(DAC0832)由上述组成整个硬件系统。

主要说一下 DAC0832 以及 DCDC 模块单元,其余就不再叙述了,老生常谈的东西了,如果有不会的知识点可以回顾一下我前面的文章。

1.1.DAC0832 电路原理分析

DAC0832 是一种 8 位数字到模拟转换器(DAC),用于将数字信号转换为相应的模拟电压输出。它是由 Analog Devices 公司生产的一款DAC芯片,广泛应用于需要精确模拟信号生成的场合,如音频处理、信号发生器、测试设备以及嵌入式系统中。

如下为数据手册:

上述就是具体引脚的功能了。

DAC0832的主要特点:

  1. 8位分辨率:DAC0832能够将8位数字输入(从0到255)转换成相应的模拟电压输出。分辨率为8位,意味着它有256个不同的输出级别。

  2. 输入接口

    • 并行输入:DAC0832的输入接口是并行型的,它通过8个数据输入引脚(D0-D7)接收8位数字信号。
    • 输入信号是由外部系统提供的数字信号,DAC0832将这些信号转换成相应的模拟电压。
  3. 模拟输出

    • 输出端为模拟电压,电压范围通常取决于芯片的电源电压。假设工作电压为5V,则输出电压范围通常是0V到5V,具体取决于输入数字的值。
  4. 输出类型:DAC0832提供一个双极性输出,允许其在输出端产生正负电压。默认情况下,它使用外部的运算放大器来对输出进行增益调整,以适应不同的应用需求。

  5. 工作电压

    • Vcc:通常为5V,但也有部分版本支持3V电源。
    • Vref:参考电压,通常与Vcc相同。它决定了转换输出的最大电压值。
  6. 转换速率

    • DAC0832具有较高的转换速率,通常为1MSPS(每秒百万次采样),适用于大多数需要快速模拟信号转换的应用。
  7. 控制引脚

    • LDAC:加载数据的控制引脚。当LDAC为低时,DAC将输入数据加载到其内部寄存器中并进行转换。
    • CS (Chip Select):芯片选择引脚,低电平有效,用来选择DAC进行操作。
    • WR (Write):写控制信号,用来触发数据输入到DAC内部。
    • SYNC:同步信号,用于将多个DAC设备同步工作。
  8. 内置运算放大器:DAC0832内部具有一个高输入阻抗的运算放大器,用于对输出电压进行缓冲和驱动,输出信号能够驱动外部负载。

  9. 低功耗:DAC0832采用CMOS技术,具备低功耗特点,适用于需要低功耗的便携式设备。

更多内容还是需要在数据手册搜寻自己所需的信息内容才行。

1.2.DCDC 电路原理分析

由于波形发生器利用了 LM324 正负电源有包含 +10V -10V的正负电压,并且MCU等相关模块都是3.3V电压,且输入电压为12V,因此我们需要多方面的DCDC转换,具体如下:

在Power_VIN中为12V,因此我们要 DCDC 12V-24V to 10.00V 我们利用 TPS62933 来完成此需求,具体内容如下图所示:

下图为案例电路图参考:

由于我们得到+10V之后 LM324 还需要 -10V 才可行,因此需要 DCDC 10V-12V to -10.00V,我们利用 LMZM33606 来实现需求,具体手册参考图如下所示:

更多的详情内容还需要看手册来设计,由于篇幅有限,就只展示部分内容。

最后,我们需要 DCDC 10V-12V to 3.30V 供给 MCU 电压,我们选用 TPS82140 ,相关手册如下所示:

案例如下所示:

综上我们对于原理进行了需求分析,现在可以开始进行原理图设计了。

2.原理图与PCB设计

2.1.原理图分析

总图总览如下所示:

有了前面的相关分析,上述原理图也非常的容易理解了。

2.2.PCB分析

2D图如下所示:

3D预览图如下所示:

二、软件设计

重点讲一下下述的功能点,频率可调、波形可选的信号发生器,使用 STM32 的定时器、GPIO 和中断机制来输出正弦波、三角波和方波信号。下面我们逐步分析代码。

1. sine_wave 函数(输出正弦波)

static void sine_wave(uint8_t location) // 输出正弦波
{static uint8_t i = 0;location = location * 256 / 100;  // 将 location 转换为 0 到 255 的范围GPIOA->ODR = tab[location];  // 从预定义的正弦波查找表 tab 中读取对应的波形数据并输出到 GPIOA++i;  // 每次调用增加计数器if(i >= 64)  // 如果 i 达到 64,则重置 i{i = 0;}
}
  • sine_wave 函数根据 location 值来输出正弦波信号。location 是波形的当前位置。
  • location 会乘以 256 / 100 来转换为适合查找表 tab[] 的索引。tab[] 存储了正弦波的采样值。
  • 每次 sine_wave 被调用时,i 增加,i 用于周期性地从 tab[] 查找表中获取波形数据并通过 GPIOA->ODR 输出。
  • i 被限制为小于 64,这意味着正弦波的查找表周期为 64 次,当 i 达到 64 时,i 会被重置为 0。

2. tri_wave 函数(输出三角波)

static void tri_wave(uint8_t location) // 输出三角波
{uint8_t y;if(location < 50)y = (50 - location) * 255 / 50;  // 前半部分,下降的三角波elsey = (location - 50) * 255 / 50;  // 后半部分,上升的三角波GPIOA->ODR = y;  // 输出计算结果到 GPIOA
}
  • tri_wave 函数生成一个三角波形。location 控制波形的当前位置。
  • 如果 location 小于 50,波形从最大值下降;如果 location 大于 50,波形从最小值上升。
  • y 的值会在 0 到 255 之间变化,表示三角波的振幅。
  • 通过 GPIOA->ODR 输出计算得到的三角波信号。

3. squ_wave 函数(输出方波)

void squ_wave(uint8_t location) // 输出方波
{if(location < 50)GPIOA->ODR = 255;  // 输出高电平(方波的上升沿)elseGPIOA->ODR = 0x0;  // 输出低电平(方波的下降沿)
}
  • squ_wave 函数生成一个方波。location 控制波形的当前位置。
  • 如果 location 小于 50,输出高电平(255);如果 location 大于等于 50,输出低电平(0)。
  • 方波的周期是 100 个时钟周期,GPIOA->ODR 控制方波的输出。

4. set_time 函数(设置定时器周期)

static void set_time(void) // 设置定时器时间
{uint32_t Period;Period = 10000 / freq - 1;  // 根据频率计算定时器的周期htim1.Init.Period = Period;  // 设置定时器周期if (HAL_TIM_Base_Init(&htim1) != HAL_OK){Error_Handler();  // 如果定时器初始化失败,调用错误处理函数}// 启动定时器HAL_TIM_Base_Start_IT(&htim1);
}
  • set_time 根据全局变量 freq 计算定时器周期。freq 是输出波形的频率,Period 是定时器的周期值。
  • htim1.Init.Period 设置定时器的周期,10000 / freq - 1 表示定时器的溢出时间。
  • 定时器初始化成功后,通过 HAL_TIM_Base_Start_IT 启动定时器。

5. HAL_GPIO_EXTI_Callback 函数(外部中断回调)

void HAL_GPIO_EXTI_Callback(uint16_t GPIO_Pin)
{if(GPIO_PIN_10 == GPIO_Pin) // 频率加{HAL_TIM_Base_Stop(&htim1);if(freq < 20000)freq += 10;set_time();  // 重新设置定时器sprintf((char *)display_buf, "Freq:%dHz     ", freq);  // 显示频率lcd1602_display_string(0, 0, display_buf);  // LCD 显示频率HAL_TIM_Base_Start_IT(&htim1);  // 启动定时器}if(GPIO_PIN_11 == GPIO_Pin) // 频率减{HAL_TIM_Base_Stop(&htim1);if(freq > 20)freq -= 10;set_time();  // 重新设置定时器sprintf((char *)display_buf, "Freq:%dHz     ", freq);  // 显示频率lcd1602_display_string(0, 0, display_buf);  // LCD 显示频率HAL_TIM_Base_Start_IT(&htim1);  // 启动定时器}if(GPIO_PIN_12 == GPIO_Pin) // 切换波形{HAL_TIM_Base_Stop(&htim1);if(mode == 1){mode = 2;lcd1602_display_string(0, 1, (uint8_t *)"Triangle wave");}else if(mode == 2){mode = 3;lcd1602_display_string(0, 1, (uint8_t *)"Square wave  ");}else if(mode == 3){mode = 1;lcd1602_display_string(0, 1, (uint8_t *)"Sine wave  ");}HAL_TIM_Base_Start_IT(&htim1);  // 启动定时器}
}
  • 该回调函数处理外部中断,响应不同的按键或开关操作。
  • GPIO_PIN_10GPIO_PIN_11 用于增加或减少频率,每次按下时,freq 变量会增减 10,并重新设置定时器。
  • GPIO_PIN_12 用于切换波形模式。按下时,波形从正弦波(W_SINE)切换到三角波(W_TRI)再到方波(W_SQU),并在 LCD 屏上显示当前波形。

6. HAL_TIM_PeriodElapsedCallback 函数(定时器溢出回调)

void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim)
{static uint8_t times;if(htim == &htim1){switch(mode){case W_SINE: sine_wave(times); break;  // 正弦波case W_TRI:  tri_wave(times); break;   // 三角波case W_SQU:  squ_wave(times); break;   // 方波}times++;if(times >= 100) // 计数到 100 后重置times = 0;}
}
  • 当定时器溢出时,HAL_TIM_PeriodElapsedCallback 被调用。
  • 根据当前的波形模式(mode),调用相应的波形生成函数(sine_wavetri_wavesqu_wave)。
  • times 用于控制波形的位置,每次计数达到 100 时,重置为 0。

如下直接贴出main.c代码,代码非常的简单。

/* USER CODE BEGIN Header */
/********************************************************************************* @file           : main.c* @brief          : Main program body******************************************************************************* @attention** <h2><center>&copy; Copyright (c) 2021 STMicroelectronics.* All rights reserved.</center></h2>** This software component is licensed by ST under BSD 3-Clause license,* the "License"; You may not use this file except in compliance with the* License. You may obtain a copy of the License at:*                        opensource.org/licenses/BSD-3-Clause********************************************************************************/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include "stdarg.h"
#include "stdio.h"
#include "string.h"/* USER CODE END Includes *//* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD *//* USER CODE END PTD *//* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
///LCD1602使能端口控制
#define BSP_LCD1602_EN_H		HAL_GPIO_WritePin(LCD1602_EN_GPIO_Port, LCD1602_EN_Pin, GPIO_PIN_SET)
#define BSP_LCD1602_EN_L		HAL_GPIO_WritePin(LCD1602_EN_GPIO_Port, LCD1602_EN_Pin, GPIO_PIN_RESET)///LCD1602读/写端口控制
#define BSP_LCD1602_RW_H		HAL_GPIO_WritePin(LCD1602_RW_GPIO_Port, LCD1602_RW_Pin, GPIO_PIN_SET)
#define BSP_LCD1602_RW_L		HAL_GPIO_WritePin(LCD1602_RW_GPIO_Port, LCD1602_RW_Pin, GPIO_PIN_RESET)///LCD1602指令/数据端口控制
#define BSP_LCD1602_RS_H		HAL_GPIO_WritePin(LCD1602_RS_GPIO_Port, LCD1602_RS_Pin, GPIO_PIN_SET)
#define BSP_LCD1602_RS_L		HAL_GPIO_WritePin(LCD1602_RS_GPIO_Port, LCD1602_RS_Pin, GPIO_PIN_RESET)#define W_SINE 1
#define W_TRI 2
#define W_SQU 3/* USER CODE END PD *//* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM *//* USER CODE END PM *//* Private variables ---------------------------------------------------------*/
TIM_HandleTypeDef htim1;
TIM_HandleTypeDef htim2;/* USER CODE BEGIN PV */
static uint8_t display_buf[16];static unsigned char tab[256]=     //正弦表
{0x80,0x83,0x86,0x89,0x8d,0x90,0x93,0x96,0x99,0x9c,0x9f,0xa2,0xa5,0xa8,0xab,0xae,0xb1,0xb4,0xb7,0xba,0xbc,0xbf,0xc2,0xc5,0xc7,0xca,0xcc,0xcf,0xd1,0xd4,0xd6,0xd8,0xda,0xdd,0xdf,0xe1,0xe3,0xe5,0xe7,0xe9,0xea,0xec,0xee,0xef,0xf1,0xf2,0xf4,0xf5,0xf6,0xf7,0xf8,0xf9,0xfa,0xfb,0xfc,0xfd,0xfd,0xfe,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xfe,0xfd,0xfd,0xfc,0xfb,0xfa,0xf9,0xf8,0xf7,0xf6,0xf5,0xf4,0xf2,0xf1,0xef,0xee,0xec,0xea,0xe9,0xe7,0xe5,0xe3,0xe1,0xde,0xdd,0xda,0xd8,0xd6,0xd4,0xd1,0xcf,0xcc,0xca,0xc7,0xc5,0xc2,0xbf,0xbc,0xba,0xb7,0xb4,0xb1,0xae,0xab,0xa8,0xa5,0xa2,0x9f,0x9c,0x99,0x96,0x93,0x90,0x8d,0x89,0x86,0x83,0x80,0x80,0x7c,0x79,0x76,0x72,0x6f,0x6c,0x69,0x66,0x63,0x60,0x5d,0x5a,0x57,0x55,0x51,0x4e,0x4c,0x48,0x45,0x43,0x40,0x3d,0x3a,0x38,0x35,0x33,0x30,0x2e,0x2b,0x29,0x27,0x25,0x22,0x20,0x1e,0x1c,0x1a,0x18,0x16,0x15,0x13,0x11,0x10,0x0e,0x0d,0x0b,0x0a,0x09,0x08,0x07,0x06,0x05,0x04,0x03,0x02,0x02,0x01,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x01,0x02,0x02,0x03,0x04,0x05,0x06,0x07,0x08,0x09,0x0a,0x0b,0x0d,0x0e,0x10,0x11,0x13,0x15,0x16,0x18,0x1a,0x1c,0x1e,0x20,0x22,0x25,0x27,0x29,0x2b,0x2e,0x30,0x33,0x35,0x38,0x3a,0x3d,0x40,0x43,0x45,0x48,0x4c,0x4e,0x51,0x55,0x57,0x5a,0x5d,0x60,0x63,0x66,0x69,0x6c,0x6f,0x72,0x76,0x79,0x7c,0x80
};static uint8_t mode = 1;
static uint16_t freq = 20;/* USER CODE END PV *//* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_TIM2_Init(void);
static void MX_TIM1_Init(void);
/* USER CODE BEGIN PFP *//* USER CODE END PFP *//* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
void  delay_us(uint16_t nus)//us延时
{__HAL_TIM_SetCounter(&htim2,0);__HAL_TIM_ENABLE(&htim2);while(__HAL_TIM_GetCounter(&htim2)<nus);__HAL_TIM_DISABLE(&htim2);
}
/*---------------------------------------------------------------------------*/
static void lcd1602_delay_1us(void)
{delay_us(1);
}
/*---------------------------------------------------------------------------*/
void lcd1602_delay_1ms(void)
{HAL_Delay(1);
}
/*---------------------------------------------------------------------------*/
static void lcd1602_port_write(uint8_t val)//1602写入数据
{if(val & 0x80){HAL_GPIO_WritePin(LCD1602_D7_GPIO_Port, LCD1602_D7_Pin, GPIO_PIN_SET);}else{HAL_GPIO_WritePin(LCD1602_D7_GPIO_Port, LCD1602_D7_Pin, GPIO_PIN_RESET);}if(val & 0x40){HAL_GPIO_WritePin(LCD1602_D6_GPIO_Port, LCD1602_D6_Pin, GPIO_PIN_SET);}else{HAL_GPIO_WritePin(LCD1602_D6_GPIO_Port, LCD1602_D6_Pin, GPIO_PIN_RESET);}if(val & 0x20){HAL_GPIO_WritePin(LCD1602_D5_GPIO_Port, LCD1602_D5_Pin, GPIO_PIN_SET);}else{HAL_GPIO_WritePin(LCD1602_D5_GPIO_Port, LCD1602_D5_Pin, GPIO_PIN_RESET);}if(val & 0x10){HAL_GPIO_WritePin(LCD1602_D4_GPIO_Port, LCD1602_D4_Pin, GPIO_PIN_SET);}else{HAL_GPIO_WritePin(LCD1602_D4_GPIO_Port, LCD1602_D4_Pin, GPIO_PIN_RESET);}if(val & 0x08){HAL_GPIO_WritePin(LCD1602_D3_GPIO_Port, LCD1602_D3_Pin, GPIO_PIN_SET);}else{HAL_GPIO_WritePin(LCD1602_D3_GPIO_Port, LCD1602_D3_Pin, GPIO_PIN_RESET);}if(val & 0x04){HAL_GPIO_WritePin(LCD1602_D2_GPIO_Port, LCD1602_D2_Pin, GPIO_PIN_SET);}else{HAL_GPIO_WritePin(LCD1602_D2_GPIO_Port, LCD1602_D2_Pin, GPIO_PIN_RESET);}if(val & 0x02){HAL_GPIO_WritePin(LCD1602_D1_GPIO_Port, LCD1602_D1_Pin, GPIO_PIN_SET);}else{HAL_GPIO_WritePin(LCD1602_D1_GPIO_Port, LCD1602_D1_Pin, GPIO_PIN_RESET);}if(val & 0x01){HAL_GPIO_WritePin(LCD1602_D0_GPIO_Port, LCD1602_D0_Pin, GPIO_PIN_SET);}else{HAL_GPIO_WritePin(LCD1602_D0_GPIO_Port, LCD1602_D0_Pin, GPIO_PIN_RESET);}
}
/*---------------------------------------------------------------------------*/
static uint8_t lcd1602_read_state(void)//1602读取状态
{uint8_t state;///下面为lcd操作时序BSP_LCD1602_RS_L;BSP_LCD1602_RW_H;BSP_LCD1602_EN_H;lcd1602_delay_1us();state = HAL_GPIO_ReadPin(LCD1602_D7_GPIO_Port, LCD1602_D7_Pin);BSP_LCD1602_EN_L;lcd1602_delay_1us();return state;
}
/*---------------------------------------------------------------------------*/
static void lcd1602_busy_wait(void)//1602空闲判断
{GPIO_InitTypeDef GPIO_InitStruct = {0};uint16_t timeout;GPIO_InitStruct.Pin = LCD1602_D7_Pin;GPIO_InitStruct.Mode = GPIO_MODE_INPUT;GPIO_InitStruct.Pull = GPIO_NOPULL;GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;HAL_GPIO_Init(LCD1602_D7_GPIO_Port, &GPIO_InitStruct);timeout  = 0xffff;while((lcd1602_read_state() & 0x80) == 0x80){timeout--;if(timeout == 0){break;}}lcd1602_delay_1us();GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;HAL_GPIO_Init(LCD1602_D7_GPIO_Port, &GPIO_InitStruct);
}/*---------------------------------------------------------------------------*/
static void lcd1602_write_data(uint8_t dat)//1602写数据
{///下面为lcd1602操作时序lcd1602_busy_wait();BSP_LCD1602_RS_H;BSP_LCD1602_RW_L;BSP_LCD1602_EN_L;lcd1602_port_write(dat);BSP_LCD1602_EN_H;lcd1602_delay_1us();BSP_LCD1602_EN_L;
}
/*---------------------------------------------------------------------------*/
static void lcd1602_write_command(uint8_t cmd)//1602写命令
{///下面为lcd1602操作时序lcd1602_busy_wait();BSP_LCD1602_RS_L;BSP_LCD1602_RW_L;BSP_LCD1602_EN_L;lcd1602_port_write(cmd);BSP_LCD1602_EN_H;lcd1602_delay_1us();BSP_LCD1602_EN_L;
}
/*---------------------------------------------------------------------------*/
void lcd1602_init(void)//1602初始化
{lcd1602_write_command(0x38); ///<设置16 X 2显示, 5 X 7点阵, 8位数据接口lcd1602_delay_1ms();	lcd1602_write_command(0x01); ///<显示清0,数据指针清0lcd1602_delay_1ms();	lcd1602_write_command(0x06); ///<设置写一个字符后地址加1lcd1602_delay_1ms();	lcd1602_write_command(0x0c); ///<设置开显示,不显示光标lcd1602_delay_1ms();
}
/*---------------------------------------------------------------------------*/
void lcd1602_display_char(    uint8_t      x, uint8_t y, uint8_t ch )//1602输入字符
{if(x > 15 || y > 1){return;}if(y == 0){lcd1602_write_command(x | 0x80);///<设置LCD1602第一行要显示的光标位置}else if(y == 1){lcd1602_write_command(x | 0x80 | 0x40);///<设置LCD1602第二行要显示的光标位置}lcd1602_write_data( ch );
}
/*---------------------------------------------------------------------------*/
void lcd1602_display_string( uint8_t x, uint8_t y, const uint8_t * str )//1602输入字符串
{while(*str != '\0'){lcd1602_display_char(x, y, *str); ///<显示一个字符str++;  ///<显示下一个字符x++;    ///<显示下一个位置if(x > 15){break;}}
}
/*---------------------------------------------------------------------------*/
void lcd1602_clear_display(void)//1602清屏
{lcd1602_write_command(0x01);HAL_Delay(5);
}
/*---------------------------------------------------------------------------*/
static void sine_wave(uint8_t location)//输出正弦波
{static uint8_t i = 0;location = location * 256 / 100;GPIOA->ODR = tab[location];++i;if(i>=64){i = 0;}
}
static void tri_wave(uint8_t location)//三角波
{uint8_t y;if(location<50)y=(50-location)*255/50;elsey=(location-50)*255/50;GPIOA->ODR = y;
}void squ_wave(uint8_t location)//方波
{if(location<50)GPIOA->ODR=255;elseGPIOA->ODR=0x0;
}static void set_time(void)//
{uint32_t Period;Period = 10000 / freq - 1;htim1.Init.Period = Period;if (HAL_TIM_Base_Init(&htim1) != HAL_OK){Error_Handler();}}void HAL_GPIO_EXTI_Callback(uint16_t GPIO_Pin)
{if(GPIO_PIN_10 == GPIO_Pin)//频率加{HAL_TIM_Base_Stop(&htim1);if(freq < 20000)freq += 10;set_time();sprintf((char *)display_buf, "Freq:%dHz     ", freq);lcd1602_display_string(0, 0, display_buf);HAL_TIM_Base_Start_IT(&htim1);}if(GPIO_PIN_11 == GPIO_Pin)//频率减{HAL_TIM_Base_Stop(&htim1);if(freq > 20)freq -= 10;set_time();sprintf((char *)display_buf, "Freq:%dHz     ", freq);lcd1602_display_string(0, 0, display_buf);HAL_TIM_Base_Start_IT(&htim1);}if(GPIO_PIN_12 == GPIO_Pin)//锯齿波{HAL_TIM_Base_Stop(&htim1);if(mode == 1){mode = 2;lcd1602_display_string(0, 1, (uint8_t *)"Triangle wave");}else if(mode == 2){mode = 3;lcd1602_display_string(0, 1, (uint8_t *)"Square wave  ");}else if(mode == 3){mode = 1;lcd1602_display_string(0, 1, (uint8_t *)"Sine wave  ");}HAL_TIM_Base_Start_IT(&htim1);}
}void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim)
{static uint8_t times;if(htim == &htim1){switch(mode){case W_SINE: sine_wave(times);break;//计算出波的位置case W_TRI:  tri_wave(times);break;case W_SQU:  squ_wave(times);break;}times++;if(times>=100)//计数100次times=0;}
}
/*---------------------------------------------------------------------------*/
/* USER CODE END 0 *//*** @brief  The application entry point.* @retval int*/
int main(void)
{/* USER CODE BEGIN 1 *//* USER CODE END 1 *//* MCU Configuration--------------------------------------------------------*//* Reset of all peripherals, Initializes the Flash interface and the Systick. */HAL_Init();/* USER CODE BEGIN Init *//* USER CODE END Init *//* Configure the system clock */SystemClock_Config();/* USER CODE BEGIN SysInit *//* USER CODE END SysInit *//* Initialize all configured peripherals */MX_GPIO_Init();MX_TIM2_Init();MX_TIM1_Init();/* USER CODE BEGIN 2 */lcd1602_init();//1602初始化sprintf((char *)display_buf, "Freq:%dHz     ", freq);lcd1602_display_string(0, 0, display_buf);lcd1602_display_string(0, 1, (uint8_t *)"Sine wave");HAL_TIM_Base_Start_IT(&htim1);set_time();/* USER CODE END 2 *//* Infinite loop *//* USER CODE BEGIN WHILE */while (1){/* USER CODE END WHILE *//* USER CODE BEGIN 3 */}/* USER CODE END 3 */
}/*** @brief System Clock Configuration* @retval None*/
void SystemClock_Config(void)
{RCC_OscInitTypeDef RCC_OscInitStruct = {0};RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};/** Initializes the RCC Oscillators according to the specified parameters* in the RCC_OscInitTypeDef structure.*/RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;RCC_OscInitStruct.HSIState = RCC_HSI_ON;RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE;if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK){Error_Handler();}/** Initializes the CPU, AHB and APB buses clocks*/RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSI;RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_0) != HAL_OK){Error_Handler();}
}/*** @brief TIM1 Initialization Function* @param None* @retval None*/
static void MX_TIM1_Init(void)
{/* USER CODE BEGIN TIM1_Init 0 *//* USER CODE END TIM1_Init 0 */TIM_ClockConfigTypeDef sClockSourceConfig = {0};TIM_MasterConfigTypeDef sMasterConfig = {0};/* USER CODE BEGIN TIM1_Init 1 *//* USER CODE END TIM1_Init 1 */htim1.Instance = TIM1;htim1.Init.Prescaler = 7;htim1.Init.CounterMode = TIM_COUNTERMODE_UP;htim1.Init.Period = 1000-1;htim1.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;htim1.Init.RepetitionCounter = 0;htim1.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_ENABLE;if (HAL_TIM_Base_Init(&htim1) != HAL_OK){Error_Handler();}sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;if (HAL_TIM_ConfigClockSource(&htim1, &sClockSourceConfig) != HAL_OK){Error_Handler();}sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;if (HAL_TIMEx_MasterConfigSynchronization(&htim1, &sMasterConfig) != HAL_OK){Error_Handler();}/* USER CODE BEGIN TIM1_Init 2 *//* USER CODE END TIM1_Init 2 */}/*** @brief TIM2 Initialization Function* @param None* @retval None*/
static void MX_TIM2_Init(void)
{/* USER CODE BEGIN TIM2_Init 0 *//* USER CODE END TIM2_Init 0 */TIM_ClockConfigTypeDef sClockSourceConfig = {0};TIM_MasterConfigTypeDef sMasterConfig = {0};/* USER CODE BEGIN TIM2_Init 1 *//* USER CODE END TIM2_Init 1 */htim2.Instance = TIM2;htim2.Init.Prescaler = 7;htim2.Init.CounterMode = TIM_COUNTERMODE_UP;htim2.Init.Period = 65535;htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;htim2.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_ENABLE;if (HAL_TIM_Base_Init(&htim2) != HAL_OK){Error_Handler();}sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;if (HAL_TIM_ConfigClockSource(&htim2, &sClockSourceConfig) != HAL_OK){Error_Handler();}sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;if (HAL_TIMEx_MasterConfigSynchronization(&htim2, &sMasterConfig) != HAL_OK){Error_Handler();}/* USER CODE BEGIN TIM2_Init 2 *//* USER CODE END TIM2_Init 2 */}/*** @brief GPIO Initialization Function* @param None* @retval None*/
static void MX_GPIO_Init(void)
{GPIO_InitTypeDef GPIO_InitStruct = {0};/* GPIO Ports Clock Enable */__HAL_RCC_GPIOA_CLK_ENABLE();__HAL_RCC_GPIOB_CLK_ENABLE();/*Configure GPIO pin Output Level */HAL_GPIO_WritePin(GPIOA, GPIO_PIN_0|GPIO_PIN_1|GPIO_PIN_2|GPIO_PIN_3|GPIO_PIN_4|GPIO_PIN_5|GPIO_PIN_6|GPIO_PIN_7|LCD1602_EN_Pin|LCD1602_RW_Pin|LCD1602_RS_Pin, GPIO_PIN_RESET);/*Configure GPIO pin Output Level */HAL_GPIO_WritePin(GPIOB, LCD1602_D0_Pin|LCD1602_D1_Pin|LCD1602_D2_Pin|LCD1602_D3_Pin|LCD1602_D4_Pin|LCD1602_D5_Pin|LCD1602_D6_Pin|LCD1602_D7_Pin, GPIO_PIN_RESET);/*Configure GPIO pins : PA0 PA1 PA2 PA3PA4 PA5 PA6 PA7LCD1602_EN_Pin LCD1602_RW_Pin LCD1602_RS_Pin */GPIO_InitStruct.Pin = GPIO_PIN_0|GPIO_PIN_1|GPIO_PIN_2|GPIO_PIN_3|GPIO_PIN_4|GPIO_PIN_5|GPIO_PIN_6|GPIO_PIN_7|LCD1602_EN_Pin|LCD1602_RW_Pin|LCD1602_RS_Pin;GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;GPIO_InitStruct.Pull = GPIO_NOPULL;GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);/*Configure GPIO pins : LCD1602_D0_Pin LCD1602_D1_Pin LCD1602_D2_Pin LCD1602_D3_PinLCD1602_D4_Pin LCD1602_D5_Pin LCD1602_D6_Pin LCD1602_D7_Pin */GPIO_InitStruct.Pin = LCD1602_D0_Pin|LCD1602_D1_Pin|LCD1602_D2_Pin|LCD1602_D3_Pin|LCD1602_D4_Pin|LCD1602_D5_Pin|LCD1602_D6_Pin|LCD1602_D7_Pin;GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;GPIO_InitStruct.Pull = GPIO_NOPULL;GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);/*Configure GPIO pins : PB10 PB11 PB12 */GPIO_InitStruct.Pin = GPIO_PIN_10|GPIO_PIN_11|GPIO_PIN_12;GPIO_InitStruct.Mode = GPIO_MODE_IT_FALLING;GPIO_InitStruct.Pull = GPIO_PULLUP;HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);/* EXTI interrupt init*/HAL_NVIC_SetPriority(EXTI15_10_IRQn, 0, 0);HAL_NVIC_EnableIRQ(EXTI15_10_IRQn);}/* USER CODE BEGIN 4 *//* USER CODE END 4 *//*** @brief  This function is executed in case of error occurrence.* @retval None*/
void Error_Handler(void)
{/* USER CODE BEGIN Error_Handler_Debug *//* User can add his own implementation to report the HAL error return state */__disable_irq();while (1){}/* USER CODE END Error_Handler_Debug */
}#ifdef  USE_FULL_ASSERT
/*** @brief  Reports the name of the source file and the source line number*         where the assert_param error has occurred.* @param  file: pointer to the source file name* @param  line: assert_param error line source number* @retval None*/
void assert_failed(uint8_t *file, uint32_t line)
{/* USER CODE BEGIN 6 *//* User can add his own implementation to report the file name and line number,ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) *//* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT *//************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

三、仿真验证

下图为仿真图:

如下为正弦波:

如下为三角波:

如下为方波:

频率也是可以增加减少的(20HZ-20KHZ)

相关文章:

嵌入式硬件实战基础篇(一)-STM32+DAC0832 可调信号发生器-产生方波-三角波-正弦波

引言&#xff1a;本内容主要用作于学习巩固嵌入式硬件内容知识&#xff0c;用于想提升下述能力&#xff0c;针对学习STM32与DAC0832产生波形以及波形转换&#xff0c;对于硬件的降压和对于前面硬件篇的实际运用&#xff0c;针对仿真的使用&#xff0c;具体如下&#xff1a; 设…...

ElasticSearch的Python Client测试

一、Python环境准备 1、下载Python安装包并安装 https://www.python.org/ftp/python/3.13.0/python-3.13.0-amd64.exe 2、安装 SDK 参考ES官方文档: https://www.elastic.co/guide/en/elasticsearch/client/index.html python -m pip install elasticsearch一、Client 代…...

【eNSP】企业网络架构链路聚合、数据抓包、远程连接访问实验(二)

一、实验目的 网络分段与VLAN划分&#xff1a; 通过实验了解如何将一个大网络划分为多个小的子网&#xff08;VLAN&#xff09;&#xff0c;以提高网络性能和安全性。 VLAN间路由&#xff1a; 学习如何配置VLAN间的路由&#xff0c;使不同VLAN之间能够通信。 网络设备配置&am…...

独立站 API 接口的性能优化策略

一、缓存策略* 数据缓存机制 内存缓存&#xff1a;利用内存缓存系统&#xff08;如 Redis 或 Memcached&#xff09;来存储频繁访问的数据。例如&#xff0c;对于商品信息 API&#xff0c;如果某些热门商品的详情&#xff08;如价格、库存、基本描述等&#xff09;被大量请求…...

不一样的CSS(一)

目录 前言&#xff1a; 一、规则图形 1.介绍&#xff1a; 2.正方形与长方形&#xff08;实心与空心&#xff09; 2.1正方形&#xff1a; 2.2长方形 3.圆形与椭圆形&#xff08;空心与实心&#xff09; 3.1圆形与椭圆形 4.不同方向的三角形 4.1原理 4.2边框属性 5.四…...

题目:Wangzyy的卡牌游戏

登录 - XYOJ 思路&#xff1a; 使用动态规划&#xff0c;设dp[n]表示当前数字之和模三等于0的组合数。 状态转移方程&#xff1a;因为是模三&#xff0c;所以和的可能就只有0、1、2。等号右边的f和dp都表示当前一轮模三等于k的组合数。以第一行为例&#xff1a;等号右边表示 j转…...

国外云服务器高防多少钱一年?

国外云服务器高防多少钱一年&#xff1f;入门级高防云主机&#xff1a;这类主机通常具有较低的防御峰值&#xff0c;如30G或60G&#xff0c;价格相对较低。例如&#xff0c;30G峰值防御的高防云主机年费可能在2490元左右&#xff0c;而60G峰值防御的则可能在5044元左右。中等防…...

架构篇(04理解架构的演进)

目录 学习前言 一、架构演进 1. 初始阶段的网站架构 2. 应用服务和数据服务分离 3. 使用缓存改善网站性能 4. 使用应用服务器集群改善网站的并发处理能力 5. 数据库读写分离 6. 使用反向代理和CDN加上网站相应 7. 使用分布式文件系统和分布式数据库系统 8. 使用NoSQL和…...

【363】基于springboot的高校竞赛管理系统

摘 要 如今社会上各行各业&#xff0c;都喜欢用自己行业的专属软件工作&#xff0c;互联网发展到这个时候&#xff0c;人们已经发现离不开了互联网。新技术的产生&#xff0c;往往能解决一些老技术的弊端问题。因为传统高校竞赛管理系统信息管理难度大&#xff0c;容错率低&am…...

Spring Boot 监视器

一、Spring Boot 监视器概述 &#xff08;一&#xff09;什么是 Spring Boot 监视器 定义与作用 Spring Boot 监视器&#xff08;Spring Boot Actuator&#xff09;是一个用于监控和管理 Spring Boot 应用程序的工具集。它提供了一系列的端点&#xff0c;可以获取应用程序的运…...

Javascript如何获取指定网页中的内容?

这两天有一个需求&#xff0c;就是通过JS去获取网页的内容&#xff0c;当然&#xff0c;除了今天我要分享的这个方法以外&#xff0c;其实通过Ajax的Get方法也是可以实现这个功能的&#xff0c;但是Ajax就比较麻烦一些了&#xff0c;如果只是单纯的想要获取一下纯内容&#xff…...

第2章2.3立项【硬件产品立项的核心内容】

硬件产品立项的核心内容 2.3 硬件产品立项的核心内容2.3.1 第一步&#xff1a;市场趋势判断2.3.2 第二步&#xff1a;竞争对手分析1.竞争对手识别2.根据竞争对手分析制定策略 2.3.3 第三步&#xff1a;客户分析2.3.4 第四步&#xff1a;产品定义2.3.5 第五步&#xff1a;开发执…...

区块链:Raft协议

Raft 协议是一种分布式共识机制&#xff0c;这种机制适用于网络中存在一定数量的故障节点&#xff0c;但不考虑“恶意”节点的情况&#xff0c;所以更适合作为私有链和联盟链的共识算法。 在此协议中&#xff0c;每个节点有三种状态&#xff1a; 候选者 &#xff0c;可以被选…...

【C语言】位运算

我们在上学计算机的第一节课&#xff0c;就应该见过这些常见的运算符。然而&#xff0c;你可能有印象&#xff0c;但记不住众多操作符当中的位运算符&#xff0c;以及它们的作用和使用场景&#xff0c;我们的大脑会选择性地遗忘它认为没用的信息&#xff0c;存储下那些“有实际…...

计算机体系结构之多级缓存、缓存miss及缓存hit(二)

前面章节《计算机体系结构之缓存机制原理及其应用&#xff08;一&#xff09;》讲了关于缓存机制的原理及其应用&#xff0c;其中提出了多级缓存、缓存miss以及缓存hit的疑问。故&#xff0c;本章将进行展开讲解&#xff0c; 多级缓存、缓存miss以及缓存hit存在的意义是为了保持…...

【R78/G15 开发板测评】串口打印 DHT11 温湿度传感器、DS18B20 温度传感器数据,LabVIEW 上位机绘制演化曲线

【R78/G15 开发板测评】串口打印 DHT11 温湿度传感器、DS18B20 温度传感器数据&#xff0c;LabVIEW 上位机绘制演化曲线 主要介绍了 R78/G15 开发板基于 Arduino IDE 环境串口打印温湿度传感器 DHT11 和温度传感器 DS18B20 传感器的数据&#xff0c;并通过LabVIEW上位机绘制演…...

Oracle Fetch子句

FETCH 子句在 Oracle 中可以用来限制查询返回的行数 Oracle FETCH 子句语法 以下说明了行限制子句的语法&#xff1a; [ OFFSET offset ROWS]FETCH NEXT [ row_count | percent PERCENT ] ROWS [ ONLY | WITH TIES ]OFFSET 子句 OFFSET 子句指定在行限制开始之前要跳过行…...

Linux应用——线程池

1. 线程池要求 我们创建线程池的目的本质上是用空间换取时间&#xff0c;而我们选择于 C 的类内包装原生线程库的形式来创建&#xff0c;其具体实行逻辑如图 可以看到&#xff0c;整个线程池其实就是一个大型的 CP 模型&#xff0c;接下来我们来完成它 2. 整体模板 #pragma …...

95.【C语言】数据结构之双向链表的头插,头删,查找,中间插入,中间删除和销毁函数

目录 1.双向链表的头插 方法一 方法二 2.双向链表的头删 3.双向链表的销毁 4.双向链表的某个节点的数据查找 5.双向链表的中间插入 5.双向链表的中间删除 6.对比顺序表和链表 承接94.【C语言】数据结构之双向链表的初始化,尾插,打印和尾删文章 1.双向链表的头插 方法…...

leetcode82:删除排序链表中的重复节点||

给定一个已排序的链表的头 head &#xff0c; 删除原始链表中所有重复数字的节点&#xff0c;只留下不同的数字 。返回 已排序的链表 。 示例 1&#xff1a; 输入&#xff1a;head [1,2,3,3,4,4,5] 输出&#xff1a;[1,2,5]示例 2&#xff1a; 输入&#xff1a;head [1,1,1,2…...

【C#】使用.net9在C#中向现有对象动态添加属性

在 C# 中向现有对象动态添加属性并不像在 Python 或 JavaScript 中那样容易&#xff0c;因为 C# 是一种强类型语言。 但是&#xff0c;我们可以通过使用一些技术和库来实现这一点&#xff0c;例如扩展方法、字典等。本文将详细介绍如何在 C# 中实现这一点。ExpandoObject 方法 …...

Linux进程信号(信号的产生)

目录 什么是信号&#xff1f; 信号的产生 信号产生方式1&#xff1a;键盘 前台进程 后台进程 查看信号 signal系统调用 案例 理解进程记录信号 软件层面 硬件层面 信号产生方式2:指令 信号产生方式3:系统调用 kill系统调用 案例 其他产生信号的函数调用 1.rais…...

97_api_intro_imagerecognition_pdf2word

通用 PDF OCR 到 Word API 数据接口 文件处理&#xff0c;OCR&#xff0c;PDF 高可用图像识别引擎&#xff0c;基于机器学习&#xff0c;超精准识别率。 1. 产品功能 通用识别接口&#xff1b;支持中英文等多语言字符混合识别&#xff1b;formdata 格式 PDF 文件流传参&#xf…...

【算法】【优选算法】二分查找算法(上)

目录 一、二分查找简介1.1 朴素二分模板1.2 查找区间左端点模版1.3 查找区间右端点模版 二、leetcode 704.⼆分查找2.1 二分查找2.2 暴力枚举 三、Leetcode 34.在排序数组中查找元素的第⼀个和最后⼀个位置3.1 二分查找3.2 暴力枚举 四、35.搜索插⼊位置4.1 二分查找4.2 暴力枚…...

springboot初体验

目录 环境 controller 修改端口号 更改banner图标 运行结果 最核心的:自动装配 环境 jdk17springboot3.3.5maven3.8.2 controller controller层和启动类同级 package com.example.demo.controller; ​ import org.springframework.web.bind.annotation.RequestMapping;…...

使用kalibr_calibration标定相机(realsense)和imu(h7min)

vslam-evaluation/VINS/Installation documentation/4.IMU和相机联合标定kalibr_calibration.md at master DroidAITech/vslam-evaluation GitHub 目录 1.kalibr安装 1.1安装依赖项 1.2创建工作空间 1.3下载kalibr并编译 1.4设置环境变量 2.准备标定板 3.配置驱动和打…...

绿色工厂认定流程

以下是认定绿色工厂的一般流程&#xff1a; 编制年度创建计划 各省辖市、省直管县&#xff08;市&#xff09;会结合本地区重点产业发展现状&#xff0c;挑选一批基础条件良好、有创建意愿和条件的企业进行储备培育&#xff0c;并依据当地工业企业发展实际情况按年度制定绿色工…...

《Python游戏编程入门》注-第5章5

《Python游戏编程入门》的“Analog Clock示例程序”部分讲解了模拟时钟的实现方法。该模拟时钟可以通过时针、分针和秒针的旋转,显示当前时间,如图1所示。 图1 模拟时钟 1 绘制圆 从图1中可以看出,时钟的边缘是一个白色的圆,可以通过如图2所示的代码进行绘制。 图2 绘制圆…...

LangChain Ollama实战文献检索助手(二)少样本提示FewShotPromptTemplate示例选择器

本期是用样例来提示大模型生成我们想要的答案。即在输入中给定提示的样例&#xff0c;以及提示模板&#xff0c;然后匹配较相关的样例进行文献综述。 创建示例样本FewShotPromptTemplate 这里我用GTP-o1生成了几个回答&#xff0c;作为样本 samples [{"theme": &…...

K倍区间 C++

1230. K倍区间 - AcWing题库 一开始想到的用前缀和来做&#xff0c;时间复杂度为O(n^2),Time Limit Exceeded #include <iostream> #include <cstring> #include <algorithm> #include <cstdio>using namespace std;const int N 100010;int n,k; in…...

wordpress打开缓慢/广州网站制作公司

学习完机器学习&#xff0c;把知识点做一个整理&#xff0c;提供给需要面试的各位以及后期自己的巩固复习作一个简单的知识点梳理。 本文针对有一定机器学习基础的同学&#xff0c;如果有不正确处请指正。 预处理与特征工程 异常值/缺失值 1个&#xff1a;可以直接删除&#…...

佛山个性化网站建设/宁波最好的推广平台

经验地址&#xff1a;http://jingyan.baidu.com/article/e75057f2a2288eebc91a89b7.html 当我们从别人那里导出数据库在本地导入时&#xff0c;因为数据库文件大于2M而在phpMyAdmin导入时无法导入&#xff0c;主要原因是phpMyAdmin限制导入文件最大为2M&#xff0c;那么怎样解决…...

毕业设计可以做自己的网站吗/灰色词排名上首页

翻阅古今 读写文件是最常见的IO操作。Python内置了读写文件的函数&#xff0c;用法和C是兼容的。读写文件前&#xff0c;我们先必须了解一下&#xff0c;在磁盘上读写文件的功能都是由操作系统提供的&#xff0c;现代操作系统不允许普通的程序直接操作磁盘&#xff0c;所以&…...

wordpress输出菜单/搜索量最大的关键词

本节书摘来自异步社区《为iPad而设计&#xff1a;打造畅销App》一书中的尊重用户&#xff0c;作者【英】Chris Stevens&#xff0c;更多章节内容可以访问云栖社区“异步社区”公众号查看 尊重用户为iPad而设计&#xff1a;打造畅销App在亨利福特&#xff08;Henry Ford&#xf…...

js做各类图表网站/seo网站推广软件 快排

筹备中。。。转载于:https://www.cnblogs.com/qianlong/archive/2011/12/07/2279176.html...

专业企业网站建设定制/在线服务器网站

最近在练习使用 php 写一些简单的接口&#xff0c;但是在返回的消息中&#xff0c;如果有中文&#xff0c;在测试后总是返回&#xff1a;{"resultCode":200,"message":"\u767b\u5f55\u6210\u529f\uff01","data":{"user_id":…...