当前位置: 首页 > news >正文

迁移学习相关基础

迁移学习

  • 目标
    将某个领域或任务上学习到的知识或模式应用到不同但相关的领域或问题中。

  • 主要思想
    从相关领域中迁移标注数据或者知识结构、完成或改进目标领域或任务的学习效果。

概述

  • Target data:和你的任务有直接关系的数据,但数据量少;
  • Source data:和你现在的任务没有直接关系的数据,数据量多。

按照是否有标签分为四类:
在这里插入图片描述

第一类迁移学习

target data和source data都是有标签,可分为模型的微调(Fine-tuning),和多任务学习(Multitask Learning)。

预训练微调 Fine-tuning

微调加速收敛,但是不一定对精度有提升

  • 编码器:提取特征

  • 解码器:分类

  • 微调方法:

  1. 初始模型权重不随机,解码器随机初始
  • 为保证泛化能力:
    较小学习率
    训练时间不要太长
    在这里插入图片描述
  1. 冻结层:
  • 底层学的是像素底层特征,上层学的语义相关,根据预训练模型情况冻结对应的层,图片一般冻结前面几层,声音则是冻结后面几层
    在这里插入图片描述
多任务学习 Multitask Learning

同时关注两个域上的结果,设任务A和任务B可以共用同一组输入特征,它们前面几层是共用的,但是在某个隐藏层会产生两个分支,一条产生的是任务A的分支,另一条是任务B的。
两个模型一起训练,某几层特征可以:共用,例如:多国语言,翻译

第二类迁移学习

source data有标签,target data无标签的情况

* 领域对抗性训练(Domain Adversarial Training)

和生成对抗网络相比,域适应问题免去了生成样本的过程,直接将目标域中的数据看作生成的样本。因此,生成器的目的发生了变化,不再是生成样本,而是扮演了一个特征提取(feature extractor)的功能:如何从源域和目标域中提取特征,使得判别器无法区分提取的特征是来自源域,还是目标?

  • DANN 域对抗迁移网络

在这里插入图片描述
DANN结构主要包含3个部分:

  • 特征提取器 (feature extractor) - 图示绿色部分,用来将数据映射到特定的特征空间,使标签预测器能够分辨出来自源域数据的类别的同时,域判别器无法区分数据来自哪个域。
  • 标签预测器 (label predictor) - 图示蓝色部分,对来自源域的数据进行分类,尽可能分出正确的标签。
  • 域判别器(domain classifier)- 图示红色部分,对特征空间的数据进行分类,尽可能分出数据来自哪个域。
零次学习(Zero-shot Learning)

零次学习(Zero-shot Learning)说的是source data和target data它们的任务都不相同。
语音识别一直都有训练数据(source data)和测试数据(target data)是不同任务的问题。 很有可能在测试数据中出现的词汇,在训练数据中从来没有出现过。语音识别在处理这个问题的时候,做法是找出比词汇更小的单位。通常语音识别都是拿音位(phoneme,可以理解为音标)做为单位。

如果把词汇都转成音位,在识别的时候只去识别音位,然后再把音位转换为词汇的话就可以解决训练数据和测试数据不一样的问题。

第三类迁移学习

自我学习

自我学习(Self-taught learning)其实和半监督学习很像,都是有少量的有标签数据,和非常多的无标签数据。但是与半监督学习有个很大的不同是,有标签数据可能和无标签数据是没有关系的。

第四类迁移学习

自学成簇

如果target data和source data都是无标签的话,可以用Self-taught Clustering来做。
可以用无标签的source data,可以学出一个较好的特征表示,再用这个较好的特征表示用在聚类上,就可以得到较好的结果。

相关文章:

迁移学习相关基础

迁移学习 目标 将某个领域或任务上学习到的知识或模式应用到不同但相关的领域或问题中。 主要思想 从相关领域中迁移标注数据或者知识结构、完成或改进目标领域或任务的学习效果。 概述 Target data:和你的任务有直接关系的数据,但数据量少&#xff…...

华为云计算HCIE-Cloud Computing V3.0试验考试北京考场经验分享

北京试验考场 北京考场位置 1.试验考场地址 北京市海淀区北清路156号中关村环保科技示范园区M地块Q21楼 考试场选择北京,就是上面这个地址,在预约考试的时候会显示地址,另外在临近考试的时候也会给你发邮件,邮件内会提示你考试…...

数据分析——学习框架

✅作者简介:2022年博客新星 第八。热爱国学的Java后端开发者,修心和技术同步精进。 🍎个人主页:Java Fans的博客 🍊个人信条:不迁怒,不贰过。小知识,大智慧。 💞当前专栏…...

量化交易系统开发-实时行情自动化交易-3.4.2.Okex行情交易数据

19年创业做过一年的量化交易但没有成功,作为交易系统的开发人员积累了一些经验,最近想重新研究交易系统,一边整理一边写出来一些思考供大家参考,也希望跟做量化的朋友有更多的交流和合作。 接下来聊聊基于Okex交易所API获取行情数…...

pytorch实现深度神经网络DNN与卷积神经网络CNN

DNN概述 深度神经网络DNN来自人脑神经元工作的原理,通过在计算机中逻辑抽象出多个节点,接收处理并向后传递信息,实现计算机的自我学习,类比结构见下图: 该方法通过预测输出与实际值的差异不断调整节点参数&#xff0…...

芯片测试-LDO测试

LDO测试 💢LDO的简介💢💢压降💢💢决定压降的主要因素💢 💢LDO的分类及原理💢💢PMOS LDO💢💢PMOS LDO工作过程💢💢PMOS LDO…...

期权懂|期权新手看过来:看跌期权该如何交易?

期权小懂每日分享期权知识,帮助期权新手及时有效地掌握即市趋势与新资讯! 期权新手看过来:看跌期权该如何交易? 一、可以直接购买看跌期权‌: (1)选择预期下跌的标的资产。 (2&#…...

《深入浅出HTTPS​​​​​​​​》读书笔记(8):密码学Hash算法的分类

密码学Hash算法有很多,比如MD5算法、SHA族类算法,MD5早已被证明是不安全的Hash算法了,目前使用最广泛的Hash算法是SHA族类算法。 1)MD5 MD5是一种比较常用的Hash算法,摘要值长度固定是128比特。 MD5算法目前被证明已…...

大语言模型安全,到底是什么的安全

什么是AI安全 自ChatGPT问世以来,市场上涌现出了众多大型语言模型和多样化的AI应用。这些应用和模型在为我们的生活带来便利的同时,也不可避免地面临着安全挑战。AI安全,即人工智能安全,涉及在人工智能系统的开发、部署和使用全过…...

论文2—《基于柔顺控制的智能神经导航手术机器人系统设计》文献阅读分析报告

论文报告:基于卷积神经网络的手术机器人控制系统设计 摘要 本研究针对机器人辅助微创手术中定向障碍和缺乏导航信息的问题,设计了一种智能控制导航手术机器人系统。该系统采用可靠和安全的定位技术、7自由度机械臂以及避免关节角度限制的逆运动学控制策…...

试编写算法将单链表就地逆置(默认是带头节 点,如果是不带头节点地逆置呢?)

编写一个算法来就地逆置一个单链表。默认情况下,链表是带头节点的,但如果链表不带头节点,逆置的过程会有所不同。 第一步:定义逆置函数 根据题目中的“试编写算法将单链表就地逆置”,我们需要: 定义一个…...

FPGA学习笔记#3 Vitis HLS编程规范、数据类型、基本运算

本笔记根据笔者目前的项目确定学习目标,目前主要集中在Vitis HLS上,使用的Vitis HLS版本为2022.2,在windows11下运行,仿真part为xcku15p_CIV-ffva1156-2LV-e,从这一篇开始是HLS的学习进度,主要根据教程&…...

爬虫 - 二手交易电商平台数据采集 (一)

背景: 近期有一个需求需要采集某电商网站平台的商品数据进行分析。因此,我计划先用Python实现一个简单的版本,以快速测试技术的实现可能性,再用PHP实现一个更完整的版本。文章中涉及的技术仅为学习和测试用途,请勿用于商业或非法用…...

“成交量分布指标“,通过筹码精准锁定价格方向+简单找市场支撑压力位 MT4免费公式!

指标名称:成交量分布指标 版本:MT4 ver. 1.32 之前发布的市场分布图不少朋友反馈不错,希望获得其它版本。 这个版本只有MT4的,MT5可以看之前版本,链接: “市场分布图”,精准把握价格动向 更直…...

简记Vue3(四)—— 路由

个人简介 👀个人主页: 前端杂货铺 🙋‍♂️学习方向: 主攻前端方向,正逐渐往全干发展 📃个人状态: 研发工程师,现效力于中国工业软件事业 🚀人生格言: 积跬步…...

Python批量合并多个PDF

在日常工作中,处理和合并多个 PDF 文件是一个常见需求,尤其是在需要将大量文件整理成一个完整文档时。本文将详细介绍如何使用 Python 的 PyMuPDF 库来实现批量 PDF 文件合并,并提供针对大文件优化的解决方案。 安装 PyMuPDF 要使用 PyMuPD…...

Linux:vim命令总结及环境配置

文章目录 前言一、vim的基本概念二、vim模式命令解析1. 命令模式1)命令模式到其他模式的转换:2)光标定位:3)其他命令: 2. 插入模式3. 底行模式4. 替换模式5. 视图模式6. 外部命令 三、vim环境的配置1. 环境…...

贪心算法day05(k次取反后最大数组和 田径赛马)

目录 1.k次取反后最大化的数组和 2.按身高排序 3.优势洗牌 1.k次取反后最大化的数组和 题目链接:. - 力扣(LeetCode) 思路: 代码: class Solution {public int largestSumAfterKNegations(int[] nums, int k) {//如…...

默认 iOS 设置使已锁定的 iPhone 容易受到攻击

苹果威胁研究的八个要点 苹果手机间谍软件问题日益严重 了解 Apple 苹果的设备和服务器基础模型发布 尽管人们普遍认为锁定的 iPhone 是安全的,但 iOS 中的默认设置可能会让用户面临严重的隐私和安全风险。 安全研究员 Lambros 通过Pen Test Partners透露&#…...

上海市计算机学会竞赛平台2024年11月月赛丙组

题目描述 在一个棋盘上,有两颗棋子,一颗棋子在第 aa 行第 bb 列,另一个颗棋子在第 xx 行第 yy 列。 每一步,可以选择一个棋子沿行方向移动一个单位,或沿列方向移动一个单位,或同时沿行方向及列方向各移动…...

Ascend NPU上适配Step-Audio模型

1 概述 1.1 简述 Step-Audio 是业界首个集语音理解与生成控制一体化的产品级开源实时语音对话系统,支持多语言对话(如 中文,英文,日语),语音情感(如 开心,悲伤)&#x…...

IT供电系统绝缘监测及故障定位解决方案

随着新能源的快速发展,光伏电站、储能系统及充电设备已广泛应用于现代能源网络。在光伏领域,IT供电系统凭借其持续供电性好、安全性高等优势成为光伏首选,但在长期运行中,例如老化、潮湿、隐裂、机械损伤等问题会影响光伏板绝缘层…...

Mysql8 忘记密码重置,以及问题解决

1.使用免密登录 找到配置MySQL文件,我的文件路径是/etc/mysql/my.cnf,有的人的是/etc/mysql/mysql.cnf 在里最后加入 skip-grant-tables重启MySQL服务 service mysql restartShutting down MySQL… SUCCESS! Starting MySQL… SUCCESS! 重启成功 2.登…...

MFC 抛体运动模拟:常见问题解决与界面美化

在 MFC 中开发抛体运动模拟程序时,我们常遇到 轨迹残留、无效刷新、视觉单调、物理逻辑瑕疵 等问题。本文将针对这些痛点,详细解析原因并提供解决方案,同时兼顾界面美化,让模拟效果更专业、更高效。 问题一:历史轨迹与小球残影残留 现象 小球运动后,历史位置的 “残影”…...

Xela矩阵三轴触觉传感器的工作原理解析与应用场景

Xela矩阵三轴触觉传感器通过先进技术模拟人类触觉感知,帮助设备实现精确的力测量与位移监测。其核心功能基于磁性三维力测量与空间位移测量,能够捕捉多维触觉信息。该传感器的设计不仅提升了触觉感知的精度,还为机器人、医疗设备和制造业的智…...

小木的算法日记-多叉树的递归/层序遍历

🌲 从二叉树到森林:一文彻底搞懂多叉树遍历的艺术 🚀 引言 你好,未来的算法大神! 在数据结构的世界里,“树”无疑是最核心、最迷人的概念之一。我们中的大多数人都是从 二叉树 开始入门的,它…...

comfyui 工作流中 图生视频 如何增加视频的长度到5秒

comfyUI 工作流怎么可以生成更长的视频。除了硬件显存要求之外还有别的方法吗? 在ComfyUI中实现图生视频并延长到5秒,需要结合多个扩展和技巧。以下是完整解决方案: 核心工作流配置(24fps下5秒120帧) #mermaid-svg-yP…...

图解JavaScript原型:原型链及其分析 | JavaScript图解

​​ 忽略该图的细节(如内存地址值没有用二进制) 以下是对该图进一步的理解和总结 1. JS 对象概念的辨析 对象是什么:保存在堆中一块区域,同时在栈中有一块区域保存其在堆中的地址(也就是我们通常说的该变量指向谁&…...

Element-Plus:popconfirm与tooltip一起使用不生效?

你们好&#xff0c;我是金金金。 场景 我正在使用Element-plus组件库当中的el-popconfirm和el-tooltip&#xff0c;产品要求是两个需要结合一起使用&#xff0c;也就是鼠标悬浮上去有提示文字&#xff0c;并且点击之后需要出现气泡确认框 代码 <el-popconfirm title"是…...

接口 RESTful 中的超媒体:REST 架构的灵魂驱动

在 RESTful 架构中&#xff0c;** 超媒体&#xff08;Hypermedia&#xff09;** 是一个核心概念&#xff0c;它体现了 REST 的 “表述性状态转移&#xff08;Representational State Transfer&#xff09;” 的本质&#xff0c;也是区分 “真 RESTful API” 与 “伪 RESTful AP…...