如何用GPT-4o解读视频
OpenAI在去年推出的GPT-4V已经支持了多模态识别,但一直仅限于图片输入,不支持视频。相比之下,Google的Gemini早已支持视频识别。最近,我司业务场景中出现了一个需要识别视频的需求,而我们只采购了GPT-4o模型。这就引发了一个问题:如何使用GPT-4o完成对视频的处理?
经过研究一些教程后,我找到了一个解决这个问题的可行方法。这种方法包括两个步骤:首先,将视频拆分成一系列关键帧图像;然后,将这些图像输入GPT-4o进行分析,从而完成对整个视频的解读。 实现起来很简单,这里我特意找了一段猫和老鼠的视频片段,来复现下这个实现,具体代码如下:
from IPython.display import display, Image# 这里我们需要用到cv2和base64
import cv2
import base64
import time
from openai import OpenAIclient = OpenAI()
接下来是视频关键帧的抽取。为了减少token消耗,我采用了两种方式削减信息量:
- 丢弃大部分画面,每秒只保留一帧;
- 将图片分辨率缩减至360p,以减小图片大小。
这里额外解释一下为什么要转成base64编码的数据。OpenAI接口支持两种传递图片的方式:一种是直接传可公开访问的图片URL,但我们没有;另一种是将图片直接base64编码后传递,所以我们只能选择后者。
video = cv2.VideoCapture("data/tom_and_jerry.mp4")
base64Frames = []fps = video.get(cv2.CAP_PROP_FPS)frame_jump = int(fps)
frame_count = 0# 定义目标尺寸
target_width = 640
target_height = 320while video.isOpened():success, frame = video.read()if not success:break# 一秒钟保存一帧if frame_count % frame_jump == 0:resized_frame = cv2.resize(frame, (target_width, target_height))_, buffer = cv2.imencode(".jpg", resized_frame)base64Frames.append(base64.b64encode(buffer).decode("utf-8"))frame_count += 1
video.release()
print(len(base64Frames), "frames read.")
接下来是最关键的部分:调用GPT-4o来解析图片。这个函数将处理我们先前提取的视频帧,利用GPT-4o模型分析这些图像。它会生成一个详细的视频内容描述,帮助我们理解整个视频的剧情脉络。
def vision(frames):PROMPT_MESSAGES = [{"role": "user","content": [{"type": "text","text": f"""这些图片是从视频中按先后顺序截取出来的,截取的时间间隔是1s,总共{len(frames)}张,请根据这些画面信息,用中文详细描述下视频的剧情。"""},*[{"type": "image_url","image_url": {"url": 'data:image/jpeg;base64,' + frame,}} for frame in frames]],},]params = {"model": "gpt-4o","messages": PROMPT_MESSAGES,"max_tokens": 2000,"temperature": 0.7}result = client.chat.completions.create(**params)return result.choices[0].message.content
最后,我们调用先前定义的 vision 函数来处理提取的视频帧,并获得相应的分析结果。
result = vision(base64Frames)
print(result)
得到的结果如下,剧情的描述还是相当准确的。 这个实验结果证明了我们的方法是可行的。通过将视频拆分成关键帧并使用GPT-4o进行分析,我们成功地对整个视频内容进行了准确的描述。这种方法不仅解决了我们无法直接处理视频的限制,还展示了GPT-4o在多模态任务中的强大能力。
这段视频似乎是汤姆和杰瑞的经典动画片。剧情开始时,一个女人正在用扫帚打扫地板,她穿着高跟鞋。接着,一只小白鼠(可能是杰瑞的朋友)出现在扫帚旁边。随后,汤姆猫出现,试图用扫帚抓住小白鼠,但小白鼠灵活地避开了。然后,汤姆展开追逐,抓住了小白鼠,但杰瑞及时赶到,与汤姆展开对抗。汤姆试图打开一个门,但被困在了门后。女人用扫帚打了汤姆的头,并责备他为什么还在找麻烦。汤姆用手指着小白鼠,试图证明自己的行为是正当的,但女人显然不买账。汤姆因此被赶出屋外,并浑身沾满油漆。小白鼠发现了一瓶鞋油,似乎在计划什么。最后,汤姆装扮成白色的猫,试图重新回到屋内,并假装自己是“会跳舞的猫”。女人对他的伎俩似乎感到满意,进行了表扬,但小白鼠却看穿了汤姆的伪装。视频以汤姆和小白鼠的搞笑互动结束,最后画面出现“结束”的字样。总体来看,这段视频展示了汤姆和杰瑞的经典追逐和幽默桥段,充满了滑稽和欢乐。
尽管GPT-4o官方并未提供视频分析功能,我们仍可通过这种巧妙的变通方法实现视频理解。我个人认为这种方法相当有趣。完整的代码已在GitHub上公开,链接为https://github.com/xindoo/openai-examples/blob/main/vision_for_video.ipynb。
相关文章:

如何用GPT-4o解读视频
OpenAI在去年推出的GPT-4V已经支持了多模态识别,但一直仅限于图片输入,不支持视频。相比之下,Google的Gemini早已支持视频识别。最近,我司业务场景中出现了一个需要识别视频的需求,而我们只采购了GPT-4o模型。这就引发…...

[ACTF2020]Upload 1--详细解析
信息收集 题目告诉我们是一道upload,也就是文件上传漏洞题目。 进入界面,是一个灯泡,将鼠标放在图标上就会出现文件上传的相应位置: 思路 文件上传漏洞,先看看有没有前端校验。 在js源码中找到了前端校验ÿ…...

【微软:多模态基础模型】(3)视觉生成
欢迎关注【youcans的AGI学习笔记】原创作品 【微软:多模态基础模型】(1)从专家到通用助手 【微软:多模态基础模型】(2)视觉理解 【微软:多模态基础模型】(3)视觉生成 【微…...

整合Druid
添加依赖 配置数据源信息...

基于Python空气质量可视化及预测
摘 要 随着社会的发展和工业化进程的加速,环境问题日益凸显,尤其是空气质量问题对人们的生活和健康产生了重大影响。为了更好地了解和预测空气质量,本文设计并实现了一个基于Python爬虫、Flask框架和ECharts的天气质量预测及可视化系统。该系统通过爬取网络上的空气质量数据…...

第1章-PostgreSQL(PG)介绍
第1章-PostgreSQL(PG)介绍 1、简介2、排名3、发展4、应用5、优势6、对比 1、简介 PostgreSQL是一种特性非常齐全的自由软件的对象-关系型数据库管理系统(ORDBMS),是以加州大学计算机系开发的POSTGRES,4.2版…...

moduo之阻塞队列BlockingQueue和BoundedBlockingQueue
简介 moduo中的队列与java线程池中的队列类似, 有无界阻塞队列和有界阻塞队列 结构 #mermaid-svg-Gf8nET825tZgzVRM {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-Gf8nET825tZgzVRM .error-icon{fill…...

大模型Tuning方法详解
1. 引言 大模型与Tuning的重要性 随着人工智能和深度学习技术的快速发展,大规模预训练模型(Large Pre-trained Models,简称大模型)在自然语言处理、计算机视觉等领域取得了显著的效果。大模型如GPT-4、BERT、T5和DALL-E等具备强…...

爬虫策略与反爬机制——爬虫常见策略
随着网络爬虫技术的日益发展,反爬机制也变得越来越复杂,网站和服务商不断加强对爬虫行为的监控和限制,开发者需要采取一系列有效的爬虫策略来提高爬虫的效率并规避反爬措施。本章将介绍一些常见的爬虫策略,帮助开发者应对不同情况…...

Linux基础(十七)——Linux 帐号管理与 ACL 权限设置
Linux 帐号管理与 ACL 权限设置 1.UID与GID2./etc/passwd3./etc/shadow4./etc/group5./etc/gshadow6.有效群组和初始群组7.账号管理7.1 增加、修改、删除账户7.2 增加、修改、删除群组7.3 实例 8.ACL使用8.1 ACL定义8.2 查询与设置ACL 9.用户切换9.1 su9.2 .sudo 10. 使用者的特…...

【HarmonyOS】鸿蒙系统在租房项目中的项目实战(二)
从今天开始,博主将开设一门新的专栏用来讲解市面上比较热门的技术 “鸿蒙开发”,对于刚接触这项技术的小伙伴在学习鸿蒙开发之前,有必要先了解一下鸿蒙,从你的角度来讲,你认为什么是鸿蒙呢?它出现的意义又是…...

11.16 Vue element
Ajax 概念:Asynchronous JavaScript Anderson XML,异步的JavaScript和XML。 作用: 数据交换:通过Ajax 可以给服务器发送请求,并收取服务器相应的数据。异步交互:可以在不重新加载整个页面的情况下&#…...

Gin 框架中的路由
1、路由概述 路由(Routing)是由一个 URI(或者叫路径)和一个特定的 HTTP 方法(GET、POST 等) 组成的,涉及到应用如何响应客户端对某个网站节点的访问。 RESTful API 是目前比较成熟的一套互联网应用程序的 API 设计理论,所以我们设计我们的路 由的时候建议参考 …...

在MATLAB中实现自适应滤波算法
自适应滤波算法是一种根据信号特性自动调整滤波参数的数字信号处理方法,其可以有效处理噪声干扰和信号畸变问题。在许多实时数据处理系统中,自适应滤波算法得到了广泛应用。在MATLAB中,可以使用多种方法实现自适应滤波算法。本文将介绍自适应…...

linux文件与重定向
目录 一、共识原理 二、回顾C语言文件函数 1.fopen 2.fwrite 3.fclose 三、文件系统调用 1.open 2.write 3.访问文件的本质 4.stdin&&stdout&&stderror 5.文件的引用计数 四、重定向 1.文件描述符的分配规则 2. 输出重定向 3.重定向系统调用 4.…...

基于Python的仓库管理系统设计与实现
背景: 基于Python的仓库管理系统功能介绍 本仓库管理系统采用Python语言开发,利用Django框架和MySQL数据库,实现了高效、便捷的仓库管理功能。 用户管理: 支持员工和管理员角色的管理。 用户注册、登录和权限分配功能&#x…...

【Pikachu】URL重定向实战
人生在世只有一次,不必勉强选择自己不喜欢的路,随性而生或随性而死都没关系,不过无论选择哪条路,都不要忘记自己的初心。 1.不安全的url跳转实战 首先点击页面上的链接,观察url 直接修改url为https://www.baidu.com进…...

C语言实现3D动态爱心图形的绘制与动画效果
**标题:C语言实现3D动态爱心图形的绘制与动画效果** --- ### 一、引言 在计算机图形学中,三维图形的绘制和动画处理是一个重要且有趣的研究方向。通过数学公式描述的几何体可以在计算机屏幕上展示出丰富多彩的动态效果,其中“爱心”图形作…...

深入理解Nginx:从基础配置到高级优化
什么是Nginx? Nginx(发音为“Engine-X”)是一个高性能的HTTP和反向代理服务器,同时也可以作为邮件代理服务器和通用的TCP/UDP代理服务器。Nginx以其高并发处理能力、稳定性和灵活的配置闻名,是现代Web开发和部署的核心…...

ONLYOFFICE8.2版本测评,团队协作的办公软件
文章目录 引言ONLYOFFICE产品简介功能与特点1. 实时协作2. 兼容性3. 模板库4. 评论和修订5. 安全性 体验与测评功能测试 邀请用户使用项目介绍结尾了解更多 引言 在数字化办公的浪潮中,效率和协作成为了工作的核心。ONLYOFFICE作为一个强大的办公套件,正…...

spring 和 grpc 的整合
spring 和 grpc 的整合 首先我们要知道 grpc 中我们在使用的时候用到了 grpc 的那些东西 dil 的编写serverimplserverbuilder addService 客户端的 stub 编写 这里面我们看一下我们那些地方可能需要 spring 帮我们管理,那些地方我们需要自己来管理呢?…...

企业项目级IDEA设置类注释、方法注释模板(仅增加@author和@date)
文章目录 前言一 设置类注释1.1 添加模板1.2 复制配置 二 设置方法注释2.1 添加模版2.2 设置模版2.3 设置参数变量2.4 配置对应快捷键2.5 配置对应作用域2.6 使用方式 说明 前言 公司代码规范中,需要在标准JavaDoc注释的基础上加上作者和日期。网上虽然有很多现成的…...

1 设计模式原则之开闭原则
一、开闭原则 1.定义 开闭原则:对扩展开放,对修改关闭。 2.具体用法 在程序需要进行拓展的时候,不能去修改原有的代码,实现一个热插拔的效果。简言之,是为了使程序的扩展性好,易于维护和升级。 想要达到这…...

前端大环境
需求增长: 数字化转型推动:企业和组织的数字化转型进程不断加快,对前端开发的需求持续增加。无论是企业官网、电子商务平台、在线办公系统还是各种移动端应用,都需要专业的前端开发来打造良好的用户界面和交互体验。新兴技术和平台…...

Electron: 主进程和渲染进程之间通信
// 渲染进程 向 主进程 异步通信// preload.js 预加载 const {ipcRenderer} require(electron) ipcRenderer.send(on-send-event, 这里是需要传递的参数) // 第一步ipcRenderer.on(on-resend-event, (e, data) > {console.log(data) // 打印的是ipcMain.on传递过来的参数&a…...

社交电商的优势及其与 AI 智能名片小程序、S2B2C 商城系统的融合发展
摘要:本文深入分析了社交电商相较于传统电商的优势,包括门槛低、易操作、更生活化和可团队化运作等特点。同时,探讨了 AI 智能名片小程序和 S2B2C 商城系统在社交电商发展中的作用,以及它们与社交电商融合所带来的新机遇和发展前景…...

蓝桥杯c++算法学习【4】之简单数论(阶乘约数、求值、循环小数、等差数列、最大比例:::非常典型的必刷例题!!!)
别忘了请点个赞收藏关注支持一下博主喵!!!! 关注博主,更多蓝桥杯nice题目静待更新:) 简单数论 一、阶乘约数 【问题描述】 定义阶乘n!123...n。 请问100! (100 的阶乘)有多少个正约数。 【答案提交】 这…...

重构代码之删除对参数的赋值
删除对参数的赋值 是一种重构技术,旨在消除对方法参数的重新赋值。这种实践可以增强代码的可读性和维护性,避免潜在的副作用。以下是详细讲解: 一、动机 保护参数的意图:方法参数通常表示传入数据或状态。如果重新赋值ÿ…...

Docker的基本概念、安装步骤以及一些简单的用法
Docker 是一种开源的容器化平台,允许开发者打包应用及其依赖项到一个可移植的容器中。容器可以在任何支持Docker的环境中运行,这使得应用的部署和管理变得更加简单和高效。 1. Docker的基本概念 在深入学习Docker之前,了解一些基本概念是很…...

VuePress v2 快速搭建属于自己的个人博客网站
目录 为什么用VuePress? 一、前期准备 Node.js 使用主题快速开发 二、VuePress安装 三、个性化定制 修改配置信息 删除不需要的信息 博客上传 四、部署 使用github快速部署 初始化仓库 本地配置 配置github的ssh密钥 部署 为什么用VuePressÿ…...