当前位置: 首页 > news >正文

智能网页内容截图工具:AI助力内容提取与可视化

我们每天都会接触到大量的网页内容。然而,如何从这些内容中快速提取关键信息,并有效地进行整理和分享,一直是困扰我们的问题。本文将介绍一款我近期完成的基于AI技术的智能网页内容截图工具,它能够自动分析网页内容,截取重要区域,为用户提供便捷的内容提取与可视化服务。

一、项目背景与价值

在撰写文章或进行学术研究时,我们常常需要从网页中提取关键信息。然而,许多网页内容丰富,需要截图的内容较多,手动截图不仅费时费力,还容易遗漏重要信息。为了解决这一问题,我们开发了一款智能网页内容截图工具,通过AI技术自动分析网页内容,并截取重要区域,提高内容提取的效率和准确性。

alt
alt

二、技术实现

  1. 技术选型

本项目采用Python编程语言,结合Streamlit、Playwright、Pillow等库实现。Streamlit用于构建交互式Web应用,Playwright用于网页自动化操作,Pillow用于图像处理。

  1. 核心逻辑

(1)数据预处理:从用户输入的URL获取网页内容,并进行初步处理,如去除HTML标签、提取文本等。

(2)核心业务逻辑:使用AI技术分析网页内容,识别关键区域,并生成JSON格式的区域列表。

(3)结果处理:根据区域列表,使用Playwright截取对应区域的截图,并展示给用户。

  1. 关键设计决策

(1)使用Playwright进行网页自动化操作,实现快速、稳定的内容提取。

(2)结合Pillow库进行图像处理,确保截图质量。

(3)采用Streamlit构建交互式Web应用,提高用户体验。

三、核心逻辑说明:

class AnalyzeWebPage(Action):
    """分析网页内容的动作"""
    
    PROMPT_TEMPLATE: ClassVar[str] = """分析以下HTML内容,识别包含关键商业和产品信息的区域。将较长的内容区域分成多个独立的小区块。

    重点关注以下内容(每个区域建议不超过一屏幕高度):
    1. 产品标题区域:
       - 产品名称和简短标语
       - 一句话价值主张
    
    2. 核心特性区域:
       - 识别所有产品功能或特点
       - 每个技术优势说明
       - 所有应用场景
    
    3. 产品亮点:
       - 所有产品优势点
       - 所有核心功能说明
       - 所有用户价值点

    请严格按照以下JSON格式返回结果,不要包含任何其他说明文字:
    [
        {{
            "description": "产品名称和简短标语",
            "selector": "h1.product-title"
        }},
        {{
            "description": "AI自动操作特性介绍",
            "selector": "div.feature-block:nth-child(1)"
        }}
    ]

    注意:
    - 必须返回JSON数组格式
    - 每个区域必须包含 description 和 selector 两个字段
    - 不要返回任何其他格式的内容
    - 不要包含任何解释或说明文字
    
    HTML内容:
    {html_content}
    """

    
    REVIEW_PROMPT: ClassVar[str] = """作为网页内容分析专家,请仔细审查以下已识别的内容区域,并检查是否有遗漏或不准确的地方。

    当前已识别的区域:
    {areas}

    原始HTML内容:
    {html_content}

    请重点检查:
    1. 产品核心信息是否完整(标题、简介、价格等)
    2. 产品特性和功能说明是否完整
    3. 技术规格和参数是否完整
    4. 使用场景和用户价值是否完整
    5. 产品优势和亮点是否完整

    如果发现遗漏,请严格按照以下JSON格式返回完整的区域列表:
    [
        {{
            "description": "区域描述",
            "selector": "CSS选择器"
        }}
    ]

    如果当前区域划分已经完整,直接返回"PASS"。

    注意:
    - 必须返回JSON数组或"PASS"
    - 不要返回任何其他格式的内容
    - 不要包含任何解释或说明文字
    """

    
    name: str = "AnalyzeWebPage"
    
    async def run(self, html_content: str) -> list:
        """实现网页分析逻辑"""
        try:
            # 使用模板分析页面内容
            prompt = self.PROMPT_TEMPLATE.format(html_content=html_content)
            logger.debug(f"发送给AI的提示: {prompt[:200]}...")
            
            try:
                # 添加明确的格式要求
                response = await self._aask(prompt + "\n请严格按照JSON数组格式返回结果,不要包含任何其他内容。")
                logger.debug(f"AI的原始响应: {response}")
            except Exception as e:
                logger.error(f"调用AI接口失败: {str(e)}")
                return self.get_default_areas()
            
            # 尝试从响应中提取JSON部分
            areas = None
            try:
                # 尝试直接解析
                if response and response.strip().startswith("["):
                    areas = json.loads(response.strip())
                # 尝试从代码块中提取
                elif response and "```" in response:
                    code_blocks = response.split("```")
                    for block in code_blocks:
                        block = block.strip()
                        if block.startswith("json"):
                            block = block[4:].strip()
                        try:
                            parsed = json.loads(block)
                            if isinstance(parsed, list):
                                areas = parsed
                                break
                        except:
                            continue
                
                if not areas:
                    logger.warning("无法从响应中提取有效的JSON,使用默认区域")
                    return self.get_default_areas()
                    
            except json.JSONDecodeError as e:
                logger.error(f"JSON解析错误: {str(e)}")
                logger.error(f"尝试解析的文本: {response}")
                return self.get_default_areas()
            except Exception as e:
                logger.error(f"解析过程中的其他错误: {str(e)}")
                logger.error(f"错误类型: {type(e)}")
                logger.error(f"出错时的响应内容: {response}")
                return self.get_default_areas()
            
            # 确保areas不为None后再进行审查
            try:
                logger.info("开始审查区域完整性...")
                reviewed_areas = await self.review_areas(html_content, areas)
                logger.info(f"审查完成,最终区域数量: {len(reviewed_areas)}")
                return reviewed_areas
            except Exception as e:
                logger.error(f"区域审查失败: {str(e)}")
                return areas  # 如果审查失败,返回原始区域
            
        except Exception as e:
            logger.exception(f"分析页面失败: {str(e)}")
            
        # 如果前面的步骤都失败了,返回默认区域
        logger.warning("使用默认区域")
        return self.get_default_areas()

这是最主要的代码部分,用来分析网页内容,该智能体会根据playwright抓取到的网页源码,分析其中的内容部分,做一遍阅读理解,找到内容的重点,然后,选出内容重点所在页面元素的所在父级元素,调用相应的类库,把它渲染成图片,并保存下来。

alt

我还加了一个“审阅选取的区域是否合理完整”的智能体,以及用来截图的工具类。

最后,通过streamlit把结果展示出来,这样,我可以通过预览来决定,那些截图是我想要,我直接用就可以了。

这款工具不仅能够提高内容提取的效率和准确性,还能为用户提供便捷的内容可视化服务。奇奇怪怪的小工具又增加了!但话不多说,你说它是不是也挺使用的啊?

本文由 mdnice 多平台发布

相关文章:

智能网页内容截图工具:AI助力内容提取与可视化

我们每天都会接触到大量的网页内容。然而,如何从这些内容中快速提取关键信息,并有效地进行整理和分享,一直是困扰我们的问题。本文将介绍一款我近期完成的基于AI技术的智能网页内容截图工具,它能够自动分析网页内容,截…...

Axure设计之文本编辑器制作教程

文本编辑器是一个功能强大的工具,允许用户在图形界面中创建和编辑文本的格式和布局,如字体样式、大小、颜色、对齐方式等,在Web端实际项目中,文本编辑器的使用非常频繁。以下是在Axure中模拟web端富文本编辑器,来制作文…...

【MyBatis源码】深入分析TypeHandler原理和源码

🎮 作者主页:点击 🎁 完整专栏和代码:点击 🏡 博客主页:点击 文章目录 原始 JDBC 存在的问题自定义 TypeHandler 实现TypeHandler详解BaseTypeHandler类TypeReference类型参考器43个类型处理器类型注册表&a…...

号卡分销系统,号卡系统,物联网卡系统源码安装教程

号卡分销系统,号卡系统,物联网卡系统,,实现的高性能(PHP协程、PHP微服务)、高灵活性、前后端分离(后台),PHP 持久化框架,助力管理系统敏捷开发,长期持续更新中。 主要特性 基于Auth验证的权限…...

常用命令之LinuxOracleHivePython

1. 用户改密 passwd app_adm chage -l app_adm passwd -x 90 app_adm -> 执行操作后,app_adm用户的密码时间改为90天有效期--查看该euser用户过期信息使用chage命令 --chage的参数包括 ---m 密码可更改的最小天数。为零时代表任何时候都可以更改密码。 ---M 密码…...

从dos上传shell脚本文件到Linux、麒麟执行报错“/bin/bash^M:解释器错误:没有那个文件或目录”

[rootkylin tmp]#./online_update_wars-1.3.0.sh ba51:./online_update_wars-1.3.0.sh:/bin/bash^M:解释器错误:没有那个文件或目录 使用scp命令上传文件到麒麟系统,执行shell脚本时报错 “/bin/bash^M:解释器错误:没有那个文件或目录” 解决方法: 执行…...

使用 Go 实现将任何网页转化为 PDF

在许多应用场景中,可能需要将网页内容转化为 PDF 格式,比如保存网页内容、生成报告、或者创建网站截图。使用 Go 编程语言,结合一些现有的库,可以非常方便地实现这一功能。本文将带你一步一步地介绍如何使用 Go 语言将任何网页转换…...

文件操作和IO

目录 一. 文件预备知识 1. 硬盘 2. 文件 (1) 概念 (2) 文件路径 (3) 文件类型 二. 文件操作 1. 文件系统操作 [1] File常见的构造方法 [2] File的常用方法 [3] 查看某目录下所有的目录和文件 2. 文件内容操作 (1) 打开文件 (2) 关闭文件 (3) 读文件 (4) 写文件 …...

【C++滑动窗口】1248. 统计「优美子数组」|1623

本文涉及的基础知识点 C算法:滑动窗口及双指针总结 LeetCode1248. 统计「优美子数组」 给你一个整数数组 nums 和一个整数 k。如果某个连续子数组中恰好有 k 个奇数数字,我们就认为这个子数组是「优美子数组」。 请返回这个数组中 「优美子数组」 的数…...

C语言导航 4.1语法基础

第四章 顺序结构程序设计 第一节 语法基础 语句概念 语句详解 程序详解 4.1.1语句概念 说明:构成高级语言源程序的基本单位。 特征:在C语言中语句以分号作为结束标志。 分类: (1)简单语句:空语句、…...

使用 Python 和 Py2Neo 构建 Neo4j 管理脚本

Neo4j 是一个强大的图数据库,适合处理复杂的关系型数据。借助 Python 的 py2neo 库,我们可以快速实现对 Neo4j 数据库的管理和操作。本文介绍一个功能丰富的 Python 脚本,帮助用户轻松管理 Neo4j 数据库,包含启动/停止服务、清空数…...

Centos 7 安装wget

Centos 7 安装wget 最小化安装Centos 7 的话需要上传wget rpm包之后再路径下安装一下。rpm包下载地址(http://mirrors.163.com/centos/7/os/x86_64/Packages/) 1、使用X-ftp 或者WinSCP等可以连接上传的软件都可以首先连接服务器,这里我用的…...

定时器的小应用

第一个项目 第一步,RCC开启时钟,这个基本上每个代码都是第一步,不用多想,在这里打开时钟后,定时器的基准时钟和整个外设的工作时钟就都会同时打开了 RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE);第二步&…...

linux企业中常用NFS、ftp服务

1.静态ip配置 修改ip地址为静态vim /etc/sysconfig/network-scripts/ifcfg-enxxx BOOTPROTO"static" IPADDR192.168.73.10 GATEWAY192.168.73.2 # 该配置与虚拟机网关一致 NETMASK255.255.255.0重启网卡:systemctl restart network.service ping不通域名…...

数据结构与算法分析模拟试题及答案5

模拟试题(五) 一、单项选择题(每小题 2 分,共20分) (1)队列的特点是(   )。 A)先进后出 B)先进先出 C)任意位置进出 D&#xff0…...

.NET 9.0 中 System.Text.Json 的全面使用指南

以下是一些 System.Text.Json 在 .NET 9.0 中的使用方式,包括序列化、反序列化、配置选项等,并附上输出结果。 基本序列化和反序列化 using System; using System.Text.Json; public class Program {public class Person{public string Name { get; se…...

Python自动检测requests所获得html文档的编码

使用chardet库自动检测requests所获得html文档的编码 使用requests和BeautifulSoup库获取某个页面带来的乱码问题 使用requests配合BeautifulSoup库,可以轻松地从网页中提取数据。但是,当网页返回的编码格式与Python默认的编码格式不一致时&#xff0c…...

11.12机器学习_特征工程

四 特征工程 1 特征工程概念 特征工程:就是对特征进行相关的处理 一般使用pandas来进行数据清洗和数据处理、使用sklearn来进行特征工程 特征工程是将任意数据(如文本或图像)转换为可用于机器学习的数字特征,比如:字典特征提取(特征离散化)、文本特征提取、图像特征提取。 …...

RAG经验论文《FACTS About Building Retrieval Augmented Generation-based Chatbots》笔记

《FACTS About Building Retrieval Augmented Generation-based Chatbots》是2024年7月英伟达的团队发表的基于RAG的聊天机器人构建的文章。 这篇论文在待读列表很长时间了,一直没有读,看题目以为FACTS是总结的一些事实经验,阅读过才发现FAC…...

【配置后的基本使用】CMake基础知识

🌈 个人主页:十二月的猫-CSDN博客 🔥 系列专栏: 🏀各种软件安装与配置_十二月的猫的博客-CSDN博客 💪🏻 十二月的寒冬阻挡不了春天的脚步,十二点的黑夜遮蔽不住黎明的曙光 目录 1.…...

DeepSeek 赋能智慧能源:微电网优化调度的智能革新路径

目录 一、智慧能源微电网优化调度概述1.1 智慧能源微电网概念1.2 优化调度的重要性1.3 目前面临的挑战 二、DeepSeek 技术探秘2.1 DeepSeek 技术原理2.2 DeepSeek 独特优势2.3 DeepSeek 在 AI 领域地位 三、DeepSeek 在微电网优化调度中的应用剖析3.1 数据处理与分析3.2 预测与…...

多场景 OkHttpClient 管理器 - Android 网络通信解决方案

下面是一个完整的 Android 实现&#xff0c;展示如何创建和管理多个 OkHttpClient 实例&#xff0c;分别用于长连接、普通 HTTP 请求和文件下载场景。 <?xml version"1.0" encoding"utf-8"?> <LinearLayout xmlns:android"http://schemas…...

SCAU期末笔记 - 数据分析与数据挖掘题库解析

这门怎么题库答案不全啊日 来简单学一下子来 一、选择题&#xff08;可多选&#xff09; 将原始数据进行集成、变换、维度规约、数值规约是在以下哪个步骤的任务?(C) A. 频繁模式挖掘 B.分类和预测 C.数据预处理 D.数据流挖掘 A. 频繁模式挖掘&#xff1a;专注于发现数据中…...

高频面试之3Zookeeper

高频面试之3Zookeeper 文章目录 高频面试之3Zookeeper3.1 常用命令3.2 选举机制3.3 Zookeeper符合法则中哪两个&#xff1f;3.4 Zookeeper脑裂3.5 Zookeeper用来干嘛了 3.1 常用命令 ls、get、create、delete、deleteall3.2 选举机制 半数机制&#xff08;过半机制&#xff0…...

大语言模型如何处理长文本?常用文本分割技术详解

为什么需要文本分割? 引言:为什么需要文本分割?一、基础文本分割方法1. 按段落分割(Paragraph Splitting)2. 按句子分割(Sentence Splitting)二、高级文本分割策略3. 重叠分割(Sliding Window)4. 递归分割(Recursive Splitting)三、生产级工具推荐5. 使用LangChain的…...

智能在线客服平台:数字化时代企业连接用户的 AI 中枢

随着互联网技术的飞速发展&#xff0c;消费者期望能够随时随地与企业进行交流。在线客服平台作为连接企业与客户的重要桥梁&#xff0c;不仅优化了客户体验&#xff0c;还提升了企业的服务效率和市场竞争力。本文将探讨在线客服平台的重要性、技术进展、实际应用&#xff0c;并…...

江苏艾立泰跨国资源接力:废料变黄金的绿色供应链革命

在华东塑料包装行业面临限塑令深度调整的背景下&#xff0c;江苏艾立泰以一场跨国资源接力的创新实践&#xff0c;重新定义了绿色供应链的边界。 跨国回收网络&#xff1a;废料变黄金的全球棋局 艾立泰在欧洲、东南亚建立再生塑料回收点&#xff0c;将海外废弃包装箱通过标准…...

【SQL学习笔记1】增删改查+多表连接全解析(内附SQL免费在线练习工具)

可以使用Sqliteviz这个网站免费编写sql语句&#xff0c;它能够让用户直接在浏览器内练习SQL的语法&#xff0c;不需要安装任何软件。 链接如下&#xff1a; sqliteviz 注意&#xff1a; 在转写SQL语法时&#xff0c;关键字之间有一个特定的顺序&#xff0c;这个顺序会影响到…...

OkHttp 中实现断点续传 demo

在 OkHttp 中实现断点续传主要通过以下步骤完成&#xff0c;核心是利用 HTTP 协议的 Range 请求头指定下载范围&#xff1a; 实现原理 Range 请求头&#xff1a;向服务器请求文件的特定字节范围&#xff08;如 Range: bytes1024-&#xff09; 本地文件记录&#xff1a;保存已…...

Spring AI 入门:Java 开发者的生成式 AI 实践之路

一、Spring AI 简介 在人工智能技术快速迭代的今天&#xff0c;Spring AI 作为 Spring 生态系统的新生力量&#xff0c;正在成为 Java 开发者拥抱生成式 AI 的最佳选择。该框架通过模块化设计实现了与主流 AI 服务&#xff08;如 OpenAI、Anthropic&#xff09;的无缝对接&…...