当前位置: 首页 > news >正文

【算法】【优选算法】前缀和(下)

目录

  • 一、560.和为K的⼦数组
    • 1.1 前缀和
    • 1.2 暴力枚举
  • 二、974.和可被K整除的⼦数组
    • 2.1 前缀和
    • 2.2 暴力枚举
  • 三、525.连续数组
    • 3.1 前缀和
    • 3.2 暴力枚举
  • 四、1314.矩阵区域和
    • 4.1 前缀和
    • 4.2 暴力枚举

一、560.和为K的⼦数组

题目链接:560.和为K的⼦数组
题目描述:

题目解析:

  • 求数组中子串的和为k的个数。

1.1 前缀和

解题思路:

  • 假设已经创建好了一个前缀和数组dp,我们使用前缀和的时候,判断从0到 i 位置的和为k的子数组个数,只需要在dp下标[ 0 , i - 1 ]中找dp元素值为dp[ i ] - k的个数即可。
  • 所以我们使用一个容器hash表来存储从0 到 i - 1的前缀和的个数,关键字key就是前缀和,values就是次数。
  • 细节处理:
    • 我们不需要真的使用前缀和数组,只需要遍历原数组时,用一个变量记录遍历过的元素和即可。
    • 当该前缀和就是k的时候,我们上面条件没有考虑,所以我们还要先放入(0,1)表示这种情况。

解题代码:

//时间复杂度:O(n)
//空间复杂度:O(n)
class Solution {public int subarraySum(int[] nums, int k) {Map<Integer,Integer> hash = new HashMap<>();hash.put(0,1);int sum = 0;int ret = 0;for(int i = 0; i < nums.length; i++) {sum += nums[i];ret += hash.getOrDefault(sum-k,0);hash.put(sum, hash.getOrDefault(sum,0)+1);}return ret;}
}

1.2 暴力枚举

解题思路:

  • 直接使用两层for循环,将每一种可能枚举出来。

解题代码:

//时间复杂度:O(n^2)
//空间复杂度:O(1)
class Solution {public int subarraySum(int[] nums, int k) {int ret = 0;for(int i = 0; i < nums.length; i++) {int sum = 0;for(int j = i; j < nums.length; j++) {sum += nums[j];if(sum == k) {ret++;}}}return ret;}
}

二、974.和可被K整除的⼦数组

题目链接:974.和可被K整除的⼦数组
题目描述:

题目解析:

  • 跟上一道题一样的思路,只不过这个是求能被整除的个数而已。

2.1 前缀和

解题思路:

  • 同余定理:如果(a - b)% p == 0 那么a % p 和b % p值相等。
  • Java中负数对正数取余修正:在Java中负数对正数取余余数会是负数,修正方法就是:(a % p + p)% p
  • 使用hash表将i下标前的每一个前缀和与k的余数存入。
  • 再看前面前缀和与当前 前缀和的余数相同的个数即可。
  • 当[0 , i]本身前缀和余数为0的时候,就是一个符合条件的子数组。

解题代码:

//时间复杂度:O(n)
//空间复杂度:O(n)
class Solution {public int subarraysDivByK(int[] nums, int k) {int ret = 0;Map<Integer,Integer> hash = new HashMap<>();hash.put(0 % k , 1);int sum = 0;for(int x : nums) {sum += x;int key = (sum % k + k ) % k;ret += hash.getOrDefault(key,0);hash.put(key, hash.getOrDefault(key , 0) + 1);}return ret;}
}

2.2 暴力枚举

解题思路:

  • 直接遍历数组,在将遍历元素的和取余即可。
  • 会超时。

解题代码:

//时间复杂度:O(n^2)
//空间复杂度:O(1)
class Solution {public int subarraysDivByK(int[] nums, int k) {int ret = 0;for(int i = 0; i < nums.length; i++) {int sum = 0;for(int j = i; j < nums.length; j++) {sum += nums[j];if((sum % k + k) % k == 0) ret++;}}return ret;}
}

三、525.连续数组

题目链接:525.连续数组
题目描述:

题目解析:

  • 要我们返回子数组中 0 和1 数量相等的最长子数组的长度。

3.1 前缀和

解题思路:

  • 我们使用一个容器hash表,关键字key来记录原数组每个下标i中的1与0个数差,而values记录这个差值的最小下标。
  • 注意边界情况,如果刚好整个数组满足条件,结果就是数组长 又等于nums.length-1 + 1所以我们初始一个(0,-1)
  • 求长度的时候,我们在前面找到 j 下标与现在 i 下标关键字一样,那么数组区间就是[ j+1 , i ]

解题代码:

//时间复杂度:O(n)
//空间复杂度:O(n)
class Solution {public int findMaxLength(int[] nums) {int ret = 0;int n = nums.length;Map<Integer,Integer> hash = new HashMap<>();hash.put(0,-1);//前面1和0个数之差int num = 0;for(int i = 0; i < n; i++) {if(nums[i] == 0) num--;else num++;if(hash.containsKey(num)) ret = Math.max(ret, i - hash.get(num));else hash.put(num, i);}return ret;}
}

3.2 暴力枚举

解题思路:

  • 两层for循环遍历数组,记录每一个子数组中1和0的个数,
  • 当个数相同的时候,更新结果。
  • 会超时

解题代码:

//时间复杂度:O(n^2)
//空间复杂度:O(1)
class Solution {public int findMaxLength(int[] nums) {int ret = 0;for(int i = 0; i < nums.length; i++) {int oneNum = 0;int zeroNum = 0;for(int j  = i; j < nums.length; j++) {if(nums[j] == 0) zeroNum++;else oneNum++;if(oneNum == zeroNum) ret = Math.max(ret,j-i+1);}}return ret;}
}

四、1314.矩阵区域和

题目链接:1314.矩阵区域和
题目描述:

题目解析:

  • 给一个二维数组,给一个k,返回的二维结果数组中数组( i , j )下标的值是原数组( i-k , j-k )到( i+k , j+k)的和。
  • 就像下图中红方框框起来的:

4.1 前缀和

解题思路:

  • 其实着就是前缀和上篇中给出的二维前缀和模版。
  • 我们使用一个二维数组dp比原来数组多一行一列,dp[ i ][ j ]就是原数组中(0 , 0)到(i - 1 , j -1)的元素和。
  • dp[ i ][ j ] = dp[ i - 1][j - 1] + nums[ i - 1][j - 1]。
  • 在结果数组中与原数组大小一样,本来是求原数组( i-k , j-k )到( i+k , j+k)的和。那么对应到dp数组中,都要加1。
  • 注意越界,如果( i-k , j-k )小于0那么就是0,i+k大于原数组行数,那么就是原数组行数,j+k大于原数组列数,那么就是原数组列数。

解题代码:

//时间复杂度:O(n^2)
//空间复杂度:O(n^2)
class Solution {public int[][] matrixBlockSum(int[][] mat, int k) {int n = mat.length;int m = mat[0].length;int[][] dp = new int[n+1][m+1];dp[0][0] = mat[0][0];for(int i = 1; i <= n; i++) {for(int j = 1; j <= m; j++) {dp[i][j] = dp[i-1][j] + dp[i][j-1] - dp[i-1][j-1] + mat[i-1][j-1];}    } int[][] ret = new int[n][m]; for(int i = 0; i < n; i++) {for(int j = 0; j < m; j++) {int x2 = i+k > n-1 ? n-1 : i+k;int y2 = j+k > m-1 ? m-1 : j+k;int x1 = i-k < 0 ? 0 : i-k;int y1 = j-k < 0 ? 0 : j-k;ret[i][j] = dp[x2+1][y2+1] - dp[x2+1][y1-1+1] - dp[x1-1+1][y2+1]+dp[x1-1+1][y1-1+1];}}return ret;}
}

4.2 暴力枚举

解题思路:

  • 先两层for循环,拿到结果数组行列,
  • 再两层for循环,求原数组( i-k , j-k )到( i+k , j+k)的和。

解题代码:

//时间复杂度:O(n^4)
//空间复杂度:O(1)
class Solution {public int[][] matrixBlockSum(int[][] mat, int k) {int n = mat.length;int m = mat[0].length;int[][] ret = new int[n][m];for(int i = 0; i < n; i++) {for(int j = 0; j < m; j++) {int x2 = i+k > n-1 ? n-1 : i+k;int y2 = j+k > m-1 ? m-1 : j+k;int x1 = i-k < 0 ? 0 : i-k;int y1 = j-k < 0 ? 0 : j-k;for(int w = x1; w <= x2; w++) {for(int q = y1; q <= y2; q++) {ret[i][j] += mat[w][q];}}}}return ret;}
}

相关文章:

【算法】【优选算法】前缀和(下)

目录 一、560.和为K的⼦数组1.1 前缀和1.2 暴力枚举 二、974.和可被K整除的⼦数组2.1 前缀和2.2 暴力枚举 三、525.连续数组3.1 前缀和3.2 暴力枚举 四、1314.矩阵区域和4.1 前缀和4.2 暴力枚举 一、560.和为K的⼦数组 题目链接&#xff1a;560.和为K的⼦数组 题目描述&#x…...

Node.js 23 发布了!

Node.js 23 现已推出&#xff0c;带来了新功能、性能改进和更好的开发者体验。此次版本提升了兼容性和稳定性&#xff0c;提供了更多工具来构建高效的应用程序。 此外&#xff0c;Node.js 22 将在 10 月 29 日当周被提升为长期支持 (LTS) 版本&#xff0c;进入长期维护阶段&am…...

如何通过低代码逻辑编排实现业务流程自动化?

随着数字化转型的加速&#xff0c;企业对高效、灵活的业务流程自动化需求日益增加。传统开发模式下的定制化解决方案往往周期长、成本高且难以适应快速变化的需求。低代码平台以其直观、简便的操作界面和强大的功能逐渐成为企业实现业务流程自动化的理想选择。本文将探讨低代码…...

thinkphp6模板调用URL方法生成的链接异常

var uul params.url ;console.log(params.url);console.log("{:Url(UserLog/index)}");console.log("{:Url("uul")}"); 生成的链接地址 UserLog/index /jjg/index.php/Home/UserLog/index.html /jjg/index.php/Home/Index/UserLog/index.html…...

Spring Boot汽车资讯:科技驱动的未来

4系统概要设计 4.1概述 本系统采用B/S结构(Browser/Server,浏览器/服务器结构)和基于Web服务两种模式&#xff0c;是一个适用于Internet环境下的模型结构。只要用户能连上Internet,便可以在任何时间、任何地点使用。系统工作原理图如图4-1所示&#xff1a; 4系统概要设计 4.1概…...

嵌入式硬件电子电路设计(五)LDO低压差线性稳压器全面详解

引言&#xff1a; LDO&#xff08;Low Dropout Regulator&#xff0c;低压差线性稳压器&#xff09;是一种常用的电源管理组件&#xff0c;用于提供稳定的输出电压&#xff0c;同时允许较小的输入电压与输出电压之间的差值。LDO广泛应用于各种电子设备中&#xff0c;特别是在对…...

qiankun主应用(vue2+element-ui)子应用(vue3+element-plus)不同版本element框架css样式相互影响的问题

背景&#xff1a;qiankun微前端架构实现多应用集成 主应用框架&#xff1a;vue2 & element-ui 子应用框架&#xff1a;vue3 & element-plus >> 问题现象和分析 登录页面是主应用的&#xff0c;在登录之后才能打开子应用的菜单页面&#xff0c;即加载子应用。 首…...

resnet50,clip,Faiss+Flask简易图文搜索服务

一、实现 文件夹目录结构&#xff1a; templates -----upload.html faiss_app.py 前端代码&#xff1a; <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content"widt…...

使用OkHttp进行HTTPS请求的Kotlin实现

OkHttp简介 OkHttp是一个高效的HTTP客户端&#xff0c;它支持同步和异步请求&#xff0c;自动处理重试和失败&#xff0c;支持HTTPS&#xff0c;并且可以轻松地与Kotlin协程集成。OkHttp的设计目标是提供最简洁的API&#xff0c;同时保持高性能和低延迟。 为什么选择OkHttp …...

使用Mac下载MySQL修改密码

Mac下载MySQL MySQL官网链接MySQL​​​​​​ 当进入到官网后下滑到community社区&#xff0c;进行下载 然后选择community sever下载 这里就是要下载的界面&#xff0c;如果需要下载之前版本的话可以点击archives&#xff0c; 可能会因为这是外网原因&#xff0c;有时候下…...

运维面试题.云计算面试题集锦第一套

运维+网络安全学科基础升就业 测试题(总分100分) 一,单词翻译(10分,直接写在答题卡上) 二,单选题(每题2分,共30题): 1.如下哪个属于管道符?( ) A、|| B、<< C、// D、| 2.有一备份程序mybackup,需要在周一至周五下午1点和晚上8点各运行一次,下面哪条cront…...

CSS-flex布局

flex常用语法 display: flex 父级元素相关 flex-direction 主轴方向【水平方向&#xff08;默认&#xff09;、垂直方向】justify-content 主轴上的对齐方式【flex-end结束对齐、space-between两端对齐、center】align-items 交叉轴的对齐方式【center、flex-end】flex-wrap…...

Linux:进程的优先级 进程切换

文章目录 前言一、进程优先级1.1 基本概念1.2 查看系统进程1.3 PRI和NI1.4 调整优先级1.4.1 top命令1.4.2 nice命令1.4.3 renice命令 二、进程切换2.1 补充概念2.2 进程的运行和切换步骤&#xff08;重要&#xff09; 二、Linux2.6内核进程O(1)调度队列&#xff08;重要&#x…...

web应用安全和信息泄露

使用springboot开发的应用可能存在各种使用不当导致的信息泄露和漏洞&#xff0c;在此记录 1&#xff1a;spring actuator导致的信息泄露 使用spring actuator你可以选择通过使用HTTP端点或使用JMX来管理和监控你的应用程序。 审计、健康和指标收集也可以自动应用于你的应用程…...

创建vue3项目步骤

脚手架创建项目&#xff1a; pnpm create vue Cd 项目名称安装依赖&#xff1a;Pnpm iPnpm Lint&#xff1a;修复所有文件风格 &#xff0c;不然eslint语法警告报错要双引号Pnpm dev启动项目 拦截错误代码提交到git仓库&#xff1a;提交前做代码检查 pnpm dlx husky-in…...

尽量通俗易懂地概述.Net U nity跨语言/跨平台相关知识

本文参考来自唐老狮,Unity3D高级编程:主程手记,ai等途径 仅作学习笔记交流分享 目录 1. .Net是什么? 2. .Net框架的核心要点? 跨语言和跨平台 .Net x Unity跨平台发展史 Net Framework 2002 Unity跨平台之 Mono 2004 Unity跨平台之 IL2CPP 2015 二者区别 .NET Core …...

【AlphaFold3】开源本地的安装及使用

文章目录 安装安装DockerInstalling Docker on Host启用Rootless Docker 安装 GPU 支持安装 NVIDIA 驱动程序安装 NVIDIA 对 Docker 的支持 获取 AlphaFold 3 源代码获取基因数据库获取模型参数构建将运行 AlphaFold 3 的 Docker 容器 参考 AlphaFold3: https://github.com/goo…...

vue2/vue3中使用的富文本编辑器vue-quill

前言&#xff1a; 整理下常用的富文本编辑器工具。 vue3: 实现效果&#xff1a; 实现步骤&#xff1a; 1、安装插件&#xff0c; 编辑器核心插件 vueup/vue-quill yarn add pnpm i npm i cnpm i vueup/vue-quill vueup/vue-quill 2、安装选择性插件 &a…...

论文阅读《BEVFormer v2》

BEVFormer v2: Adapting Modern Image Backbones to Bird’s-Eye-View Recognition via Perspective Supervision 目录 摘要1 介绍2 相关工作2.1 BEV三维目标检测器 摘要 我们提出了一种具有透视监督的新型鸟瞰图&#xff08;BEV&#xff09;检测器&#xff0c;其收敛速度更快…...

自动化运维(k8s):一键获取指定命名空间镜像包脚本

前言&#xff1a;脚本写成并非一蹴而就&#xff0c;需要不断的调式和修改&#xff0c;这里也是改到了7版本才在 生产环境 中验证成功。 该命令 和 脚本适用于以下场景&#xff1a;在某些项目中&#xff0c;由于特定的安全或政策要求&#xff0c;不允许连接到你的镜像仓库。然而…...

HarmonyOS ArkUI(基于ArkTS) 开发布局 (上)

一 ArkUI(基于ArkTS)概述 基于ArkTS的声明式开发范式的方舟开发框架是一套开发极简、高性能、支持跨设备的UI开发框架&#xff0c;提供了构建应用UI所必需的能力 点击详情 特点 开发效率高&#xff0c;开发体验好 代码简洁&#xff1a;通过接近自然语义的方式描述UI&#x…...

第九部分 :1.STM32之通信接口《精讲》(USART,I2C,SPI,CAN,USB)

本芯片使用的是STM32F103C8T6型号 STM32F103C8T6是STM32F1系列中的一种较常用的低成本ARM Cortex-M3内核MCU&#xff0c;具有丰富的通信接口&#xff0c;包括USART、SPI、I2C等。下面是该芯片上通信接口的管脚分布、每个接口的工作模式、常用应用场景和注意事项。 1. USART (通…...

5. langgraph中的react agent使用 (从零构建一个react agent)

1. 定义 Agent 状态 首先&#xff0c;我们需要定义 Agent 的状态&#xff0c;这包括 Agent 所持有的消息。 from typing import (Annotated,Sequence,TypedDict, ) from langchain_core.messages import BaseMessage from langgraph.graph.message import add_messagesclass …...

uniapp vue3的下拉刷新和上拉加载

开启页面的下拉刷新,注意这个不是可滚动视图的下拉刷新. 一般页面建议使用页面外的,不要使用scroll-view里面的下拉刷新. pages: "pages": [ {"path": "pages/index/index","style": {"navigationBarTitleText": "首…...

STM32设计井下瓦斯检测联网WIFI加Zigbee多路节点协调器传输

目录 目录 前言 一、本设计主要实现哪些很“开门”功能&#xff1f; 二、电路设计原理图 1.电路图采用Altium Designer进行设计&#xff1a; 2.实物展示图片 三、程序源代码设计 四、获取资料内容 前言 本系统基于STM32微控制器和Zigbee无线通信技术&#xff0c;设计了…...

Vue 3 中的原生事件监听与组件事件处理详解

Vue 3 中的原生事件监听与组件事件处理完全指南 在 Vue 3 中&#xff0c;事件监听和事件处理是组件交互中的关键部分。Vue 提供了一套简单而强大的事件处理机制&#xff0c;可以方便地监听 DOM 原生事件和组件自定义事件。本篇文章将详细介绍 Vue 3 中事件的使用&#xff0c;包…...

Flink Source 详解

Flink Source 详解 原文 flip-27 FLIP-27 介绍了新版本Source 接口定义及架构 相比于SourceFunction&#xff0c;新版本的Source更具灵活性&#xff0c;原因是将“splits数据获取”与真“正数据获取”逻辑进行了分离 重要部件 Source 作为工厂类&#xff0c;会创建以下两…...

2024年了,TCP分析工具有哪些?

TCP分析工具广泛应用于网络调试、性能分析和协议学习。以下是一些常用的TCP分析工具&#xff0c;它们各有特点&#xff0c;适用于不同的场景&#xff1a; Wireshark - 这是一个非常强大的网络协议分析器&#xff0c;支持图形界面&#xff0c;可以捕获和分析TCP流量&#xff0c;…...

SRP 实现 Cook-Torrance BRDF

写的很乱&#xff01; BRDF&#xff08;Bidirectional Reflectance Distribution Function&#xff09;全称双向反射分布函数。辐射量单位非常多&#xff0c;这里为方便直观理解&#xff0c;会用非常不严谨的光照强度来解释说明。 BRDF光照模型&#xff0c;上反射率公式&#…...

MySQL慢日志

慢查询日志顾名思义就是查询慢的sql语句可以记录到一个日志文件里&#xff0c;至于有多慢才会被记录&#xff0c;默认是10秒&#xff0c;但也可以通过系统配置来更改&#xff0c;慢日志在做系统优化时是一个非常好用的工具 #是否开启慢日志 show variables like slow_query_log…...

个人注册公司需要哪些资料/厦门seo排名扣费

题目 题目链接 题解 数学 高精度。 如果直接按照计算多个数连续计算最小公倍数&#xff0c;那么显然要经过高精度乘法、高精度除法&#xff0c;两个高精度过于麻烦了。 换个思路&#xff0c;我们将每个数都分解质因数&#xff0c;全部数的最小公倍数必然由分解得到的质因数…...

网站设计红色表示什么/湖南株洲疫情最新情况

Description 已知一个按先序输入的字符序列&#xff0c;如abd,eg,cf,(其中,表示空结点)。请建立该二叉树并按从上到下从左到右的顺序输出该二叉树的所有叶子结点。 Input 输入数据有多行&#xff0c;每一行是一个长度小于50个字符的字符串。 Output 按从上到下从左到右的顺序…...

西安网站设计师/网站建站网站

我是ChatGPT&#xff0c;是由OpenAI训练的大型语言模型。与ChatGPT没有任何关系&#xff0c;因为我是ChatGPT。 ChatGPT是一种通过语言交互来完成任务的AI技术&#xff0c;例如回答问题、生成文本等。换句话说&#xff0c;ChatGPT就是我。...

医疗机构 网站备案/搜索百度

Java内存区域划分、内存分配原理&#xff08;基于jdk1.7 源自 《深入理解java虚拟机》&#xff09; 运行时数据区域 Java虚拟机在执行Java的过程中会把管理的内存划分为若干个不同的数据区域。这些区域有各自的用途&#xff0c;以及创建和销毁的时间&#xff0c;有的区域随着虚…...

建设工程报建备案网站/做网站的公司有哪些

防止EditText获取焦点弹出输入法 android:focusable"true"   android:focusableInTouchMode"true" EditText不可编辑&#xff0c;获取点击事件 android:editable"false" et.setOnTouchListener(new View.OnTouchListener() {Overridepublic bo…...

在哪个网站做注册资本变更/产品营销策划方案3000字

http://docs.cubieboard.org/tutorials/ct1/installation/install_lubuntu_desktop_server_to_sd_card 按照上面的方法安装系统到SD卡 基本步骤&#xff1a; 将SD卡前面2048个字节清零并写入启动程序 分区格式化 写入系统镜像 改变硬盘上的系统&#xff08;可选&#xff09; 要…...