使用 PyTorch 实现 ZFNet 进行 MNIST 图像分类
在本篇博客中,我们将通过两个主要部分来演示如何使用 PyTorch 实现 ZFNet,并在 MNIST 数据集上进行训练和测试。ZFNet(ZFNet)是基于卷积神经网络(CNN)的图像分类模型,广泛用于图像识别任务。
环境准备
在开始之前,请确保你的环境已经安装了以下依赖:
pip install torch torchvision matplotlib tqdm
一、训练部分:训练 ZFNet 模型
首先,我们需要准备训练数据、定义 ZFNet 模型,并进行模型训练。
1. 数据加载与预处理
MNIST 数据集由 28x28 的手写数字图像组成。我们将通过 torchvision.datasets
来加载数据,并进行必要的预处理。
import torch
import torch.optim as optim
from torch.utils.data import DataLoader
from torchvision import datasets, transforms
from zfnet import ZFNet # 假设 ZFNet 定义在 zfnet.py 文件中
from tqdm import tqdm # 导入 tqdm
from torch.cuda.amp import autocast, GradScaler # 导入混合精度训练def prepare_data(batch_size=128, num_workers=2, data_dir='D:/workspace/data'):"""准备 MNIST 数据集并返回数据加载器:param batch_size: 批处理大小:param num_workers: 数据加载的工作线程数:param data_dir: 数据存储的目录:return: 训练数据加载器"""transform = transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.5,), (0.5,)) # 正则化])trainset = datasets.MNIST(root=data_dir, train=True, download=True, transform=transform)trainloader = DataLoader(trainset, batch_size=batch_size, shuffle=True, pin_memory=True, num_workers=num_workers)return trainloader
2. 初始化模型与优化器
在这里,我们将初始化模型和优化器。我们选择 Adam 优化器,并且为提高计算效率,我们采用混合精度训练。
def initialize_device():"""初始化计算设备(GPU 或 CPU):return: 计算设备"""device = torch.device("cuda" if torch.cuda.is_available() else "cpu")print(f"Using device: {device}")return devicedef initialize_model(device):"""初始化模型并移动到指定设备:param device: 计算设备:return: 初始化好的模型"""model = ZFNet().to(device) # 假设 ZFNet 是自定义模型return modeldef initialize_optimizer(model, lr=0.001):"""初始化优化器:param model: 需要优化的模型:param lr: 学习率:return: 优化器"""optimizer = optim.Adam(model.parameters(), lr=lr)return optimizer
3. 训练模型
使用训练数据进行训练,并且每训练一个 epoch 就更新一次进度条,同时使用混合精度训练来提高效率。
def train_model(model, trainloader, criterion, optimizer, num_epochs=5, device='cuda'):"""训练模型:param model: 训练的模型:param trainloader: 数据加载器:param criterion: 损失函数:param optimizer: 优化器:param num_epochs: 训练的轮数:param device: 计算设备"""scaler = GradScaler() # 用于自动缩放梯度for epoch in range(num_epochs):model.train()running_loss = 0.0# 使用 tqdm 包裹 DataLoader 来显示进度条with tqdm(trainloader, unit="batch", desc=f"Epoch {epoch + 1}/{num_epochs}") as tepoch:for inputs, labels in tepoch:# 直接将数据和标签移动到 GPUinputs, labels = inputs.to(device, non_blocking=True), labels.to(device, non_blocking=True)optimizer.zero_grad()# 混合精度前向和反向传播with autocast(): # 自动混合精度outputs = model(inputs)loss = criterion(outputs, labels)# 反向传播与优化scaler.scale(loss).backward() # 使用混合精度反向传播scaler.step(optimizer) # 更新参数scaler.update() # 更新缩放因子running_loss += loss.item()# 更新进度条显示tepoch.set_postfix(loss=running_loss / (tepoch.n + 1))# 打印每个 epoch 的平均损失print(f"Epoch {epoch + 1}, Loss: {running_loss / len(trainloader)}")# 保存模型torch.save(model.state_dict(), 'zfnet_model.pth')print("Model saved as zfnet_model.pth")
4. 主函数
在主函数中,我们会初始化设备、模型、损失函数,并启动训练过程。
if __name__ == '__main__':"""主函数:组织所有步骤的执行"""# 数据加载trainloader = prepare_data()# 设备选择device = initialize_device()# 模型初始化model = initialize_model(device)# 损失函数criterion = torch.nn.CrossEntropyLoss()# 优化器初始化optimizer = initialize_optimizer(model)# 启动训练train_model(model, trainloader, criterion, optimizer, num_epochs=5, device=device)
二、测试部分:评估 ZFNet 模型
训练完成后,我们将加载训练好的模型,并在测试集上评估其性能。
1. 加载和预处理数据
import torch
import matplotlib.pyplot as plt
from torch.utils.data import DataLoader
from torchvision import datasets, transforms
from zfnet import ZFNet # 假设 ZFNet 定义在 zfnet.py 文件中def load_and_preprocess_data(batch_size=1000):"""加载并预处理 MNIST 数据集:param batch_size: 数据加载的批次大小:return: 测试数据加载器"""transform = transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.5,), (0.5,))])# 下载 MNIST 测试集testset = datasets.MNIST(root='D:/workspace/data', train=False, download=True, transform=transform)# 数据加载器testloader = DataLoader(testset, batch_size=batch_size, shuffle=False)return testloader
2. 加载训练好的模型
def load_and_preprocess_data(batch_size=1000):"""加载并预处理 MNIST 数据集:param batch_size: 数据加载的批次大小:return: 测试数据加载器"""transform = transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.5,), (0.5,))])# 下载 MNIST 测试集testset = datasets.MNIST(root='D:/workspace/data', train=False, download=True, transform=transform)# 数据加载器testloader = DataLoader(testset, batch_size=batch_size, shuffle=False)return testloaderdef load_trained_model(model_path='zfnet_model.pth'):"""加载训练好的模型:param model_path: 模型文件路径:return: 加载的模型"""model = ZFNet()model.load_state_dict(torch.load(model_path))model.eval() # 设置为评估模式return model
3. 评估模型
def evaluate_model(model, testloader):"""评估模型在测试集上的表现:param model: 训练好的模型:param testloader: 测试数据加载器:return: 模型准确率"""correct = 0total = 0with torch.no_grad():for inputs, labels in testloader:outputs = model(inputs)_, predicted = torch.max(outputs, 1)total += labels.size(0)correct += (predicted == labels).sum().item()accuracy = correct / totalreturn accuracy
4. 可视化预测结果
def visualize_predictions(model, testloader, num_images=6):"""可视化模型对多张测试图片的预测结果:param model: 训练好的模型:param testloader: 测试数据加载器:param num_images: 显示图像的数量"""model.eval()data_iter = iter(testloader)images, labels = next(data_iter)outputs = model(images)_, predicted = torch.max(outputs, 1)# 绘制结果fig, axes = plt.subplots(2, 3, figsize=(10, 7))axes = axes.ravel()for i in range(num_images):ax = axes[i]img = images[i].numpy().transpose(1, 2, 0) # 将 Tensor 转换为 NumPy 数组并转置为 HWC 格式ax.imshow(img.squeeze(), cmap='gray') # squeeze 去除单通道维度ax.set_title(f"Pred: {predicted[i].item()} | Actual: {labels[i].item()}")ax.axis('off')plt.tight_layout()plt.show()
5. 主函数
在测试阶段,我们加载模型并在测试数据集上评估它。
def main():"""主函数,组织数据加载、模型加载、评估和可视化步骤"""# 加载并预处理数据testloader = load_and_preprocess_data()# 加载训练好的模型model = load_trained_model()# 评估模型accuracy = evaluate_model(model, testloader)print(f"Accuracy: {accuracy * 100:.2f}%")# 可视化预测结果visualize_predictions(model, testloader, num_images=6)if __name__ == '__main__':main()
结语
通过本文的介绍,我们实现了一个基于 ZFNet 模型的图像分类任务,使用 PyTorch 对 MNIST 数据集进行训练与测试,并展示了如何进行混合精度训练以提高效率。在未来,你可以根据不同的任务修改模型结构、优化器或者训练策略,进一步提升性能。
完整项目ZFNet-PyTorch: 使用 PyTorch 实现 ZFNet 进行 MNIST 图像分类https://gitee.com/qxdlll/zfnet-py-torch
相关文章:

使用 PyTorch 实现 ZFNet 进行 MNIST 图像分类
在本篇博客中,我们将通过两个主要部分来演示如何使用 PyTorch 实现 ZFNet,并在 MNIST 数据集上进行训练和测试。ZFNet(ZFNet)是基于卷积神经网络(CNN)的图像分类模型,广泛用于图像识别任务。 环…...

车轮上的科技:Spring Boot汽车新闻集散地
1系统概述 1.1 研究背景 随着计算机技术的发展以及计算机网络的逐渐普及,互联网成为人们查找信息的重要场所,二十一世纪是信息的时代,所以信息的管理显得特别重要。因此,使用计算机来管理汽车资讯网站的相关信息成为必然。开发合适…...

IDEA2023 SpringBoot整合Web开发(二)
一、SpringBoot介绍 由Pivotal团队提供的全新框架,其设计目的是用来简化Spring应用的初始搭建以及开发过程。该框架使用了特定的方式来进行配置,从而使开发人员不再需要定义样板化的配置。SpringBoot提供了一种新的编程范式,可以更加快速便捷…...

国产三维CAD 2025新动向:推进MBD模式,联通企业设计-制造数据
本文为CAD芯智库原创整理,未经允许请勿复制、转载! 上一篇文章阿芯分享了影响企业数字化转型的「MBD」是什么、对企业优化产品设计流程有何价值——这也是国产三维CAD软件中望3D 2024发布会上,胡其登先生(中望软件产品规划与GTM中…...
ubuntu 之 安装mysql8
安装 # 如果 ubuntu 版本 > 20.04 则不用执行 wget 这步 wget https://dev.mysql.com/get/mysql-apt-config_0.8.12-1_all.debsudo apt-get updatesudo apt-get install mysql-server mysql-client 安装过程中如果没有提示输入密码 sudo cat /etc/mysql/debian.cnf # 查…...

Flink Lookup Join(维表 Join)
Lookup Join 定义(支持 Batch\Streaming) Lookup Join 其实就是维表 Join,比如拿离线数仓来说,常常会有用户画像,设备画像等数据,而对应到实时数仓场景中,这种实时获取外部缓存的 Join 就叫做维…...

Elasticsearch retrievers 通常与 Elasticsearch 8.16.0 一起正式发布!
作者:来自 Elastic Panagiotis Bailis Elasticsearch 检索器经过了重大改进,现在可供所有人使用。了解其架构和用例。 在这篇博文中,我们将再次深入探讨检索器(retrievers)。我们已经在之前的博文中讨论过它们…...
【并发模式】Go 常见并发模式实现Runner、Pool、Work
通过并发编程在 Go 程序中实现的3种常见的并发模式。 参考:https://cloud.tencent.com/developer/article/1720733 1、Runner 定时任务 Runner 模式有代表性,能把(任务队列,超时,系统中断信号)等结合起来…...

【前端知识】Javascript前端框架Vue入门
前端框架VUE入门 概述基础语法介绍组件特性组件注册Props 属性声明事件组件 v-model(双向绑定)插槽Slots内容与出口 组件生命周期样式文件使用1. 直接在<style>标签中写CSS2. 引入外部CSS文件3. 使用CSS预处理器4. 在main.js中全局引入CSS文件5. 使用CSS Modules6. 使用P…...

Springboot3.3.5 启动流程之 Bean创建流程
在文章Springboot3.3.5 启动流程(源码分析)中我们只是粗略的介绍了bean 的装配(Bean的定义)流程和实例化流程分别开始于 finishBeanFactoryInitialization 和 preInstantiateSingletons. 其实,在Spring boot中,Bean 的装配是多阶段的…...
golang反射函数注册
package main import ( “fmt” “reflect” ) type Job interface { New([]interface{}) interface{} Run() (interface{}, error) } type DetEd struct { Name string Age int } // 为什么这样设计 // 这样就避免了 在创建新的实例的之后 结构体的方法中接受者为指针类型…...

【Spring】Bean
Spring 将管理对象称为 Bean。 Spring 可以看作是一个大型工厂,用于生产和管理 Spring 容器中的 Bean。如果要使用 Spring 生产和管理 Bean,那么就需要将 Bean 配置在 Spring 的配置文件中。Spring 框架支持 XML 和 Properties 两种格式的配置文件&#…...

深入解析TK技术下视频音频不同步的成因与解决方案
随着互联网和数字视频技术的飞速发展,音视频同步问题逐渐成为网络视频播放、直播、编辑等过程中不可忽视的技术难题。尤其是在采用TK(Transmission Keying)技术进行视频传输时,由于其特殊的时序同步要求,音视频不同步现…...

为什么要使用Ansible实现Linux管理自动化?
自动化和Linux系统管理 多年来,大多数系统管理和基础架构管理都依赖于通过图形或命令行用户界面执行的手动任务。系统管理员通常使用清单、其他文档或记忆的例程来执行标准任务。 这种方法容易出错。系统管理员很容易跳过某个步骤或在某个步骤上犯错误。验证这些步…...

Android:任意层级树形控件(有效果图和Demo示例)
先上效果图: 1.创建treeview文件夹 2.treeview -> adapter -> SimpleTreeAdapter.java import android.content.Context; import android.view.View; import android.view.ViewGroup; import android.widget.ImageView; import android.widget.ListView; i…...

C++ 容器全面剖析:掌握 STL 的奥秘,从入门到高效编程
引言 C 标准模板库(STL)提供了一组功能强大的容器类,用于存储和操作数据集合。不同的容器具有独特的特性和应用场景,因此选择合适的容器对于程序的性能和代码的可读性至关重要。对于刚接触 C 的开发者来说,了解这些容…...
C++---类型转换
文章目录 C的类型转换C的4种强制类型转换RTTI C的类型转换 类型转换 内置类型之间的转换 // a、内置类型之间 // 1、隐式类型转换 整形之间/整形和浮点数之间 // 2、显示类型的转换 指针和整形、指针之间 int main() {int i 1;// 隐式类型转换double d i;printf("%d…...

CSS基础学习练习题
编程题 1.为下面这段文字定义字体样式,要求字体类型指定多种、大小为14px、粗细为粗体、颜色为蓝色。 “有规划的人生叫蓝图,没规划的人生叫拼图。” 代码: <!DOCTYPE html> <html lang"en"> <head><me…...
TypeScript知识点总结和案例使用
TypeScript 是一种由微软开发的开源编程语言,它是 JavaScript 的超集,提供了静态类型检查和其他一些增强功能。以下是一些 TypeScript 的重要知识点总结: 1. 基本类型 TypeScript 支持多种基本数据类型,包括: numbe…...
解决BUG: Since 17.0, the “attrs“ and “states“ attributes are no longer used.
从Odoo 17.0开始,attrs和states属性不再使用,取而代之的是使用depends和domain属性来控制字段的可见性和其他行为。如果您想要在选择国家之后继续选择州,并且希望在选择了国家之后才显示州字段,您可以使用depends属性来实现这一点…...
前端倒计时误差!
提示:记录工作中遇到的需求及解决办法 文章目录 前言一、误差从何而来?二、五大解决方案1. 动态校准法(基础版)2. Web Worker 计时3. 服务器时间同步4. Performance API 高精度计时5. 页面可见性API优化三、生产环境最佳实践四、终极解决方案架构前言 前几天听说公司某个项…...
OkHttp 中实现断点续传 demo
在 OkHttp 中实现断点续传主要通过以下步骤完成,核心是利用 HTTP 协议的 Range 请求头指定下载范围: 实现原理 Range 请求头:向服务器请求文件的特定字节范围(如 Range: bytes1024-) 本地文件记录:保存已…...

WordPress插件:AI多语言写作与智能配图、免费AI模型、SEO文章生成
厌倦手动写WordPress文章?AI自动生成,效率提升10倍! 支持多语言、自动配图、定时发布,让内容创作更轻松! AI内容生成 → 不想每天写文章?AI一键生成高质量内容!多语言支持 → 跨境电商必备&am…...
C# SqlSugar:依赖注入与仓储模式实践
C# SqlSugar:依赖注入与仓储模式实践 在 C# 的应用开发中,数据库操作是必不可少的环节。为了让数据访问层更加简洁、高效且易于维护,许多开发者会选择成熟的 ORM(对象关系映射)框架,SqlSugar 就是其中备受…...

深入解析C++中的extern关键字:跨文件共享变量与函数的终极指南
🚀 C extern 关键字深度解析:跨文件编程的终极指南 📅 更新时间:2025年6月5日 🏷️ 标签:C | extern关键字 | 多文件编程 | 链接与声明 | 现代C 文章目录 前言🔥一、extern 是什么?&…...

Spring数据访问模块设计
前面我们已经完成了IoC和web模块的设计,聪明的码友立马就知道了,该到数据访问模块了,要不就这俩玩个6啊,查库势在必行,至此,它来了。 一、核心设计理念 1、痛点在哪 应用离不开数据(数据库、No…...

【7色560页】职场可视化逻辑图高级数据分析PPT模版
7种色调职场工作汇报PPT,橙蓝、黑红、红蓝、蓝橙灰、浅蓝、浅绿、深蓝七种色调模版 【7色560页】职场可视化逻辑图高级数据分析PPT模版:职场可视化逻辑图分析PPT模版https://pan.quark.cn/s/78aeabbd92d1...

三分算法与DeepSeek辅助证明是单峰函数
前置 单峰函数有唯一的最大值,最大值左侧的数值严格单调递增,最大值右侧的数值严格单调递减。 单谷函数有唯一的最小值,最小值左侧的数值严格单调递减,最小值右侧的数值严格单调递增。 三分的本质 三分和二分一样都是通过不断缩…...

脑机新手指南(七):OpenBCI_GUI:从环境搭建到数据可视化(上)
一、OpenBCI_GUI 项目概述 (一)项目背景与目标 OpenBCI 是一个开源的脑电信号采集硬件平台,其配套的 OpenBCI_GUI 则是专为该硬件设计的图形化界面工具。对于研究人员、开发者和学生而言,首次接触 OpenBCI 设备时,往…...

在Zenodo下载文件 用到googlecolab googledrive
方法:Figshare/Zenodo上的数据/文件下载不下来?尝试利用Google Colab :https://zhuanlan.zhihu.com/p/1898503078782674027 参考: 通过Colab&谷歌云下载Figshare数据,超级实用!!࿰…...